4,510 research outputs found

    Experiments in randomly agitated granular assemblies close to the jamming transition

    Full text link
    We present here the preliminary results obtained for two experiments on randomly agitated granular assemblies using a novel way of shaking. First we discuss the transport properties of a 2D model system undergoing classical shaking that show the importance of large scale dynamics for this type of agitation and offer a local view of the microscopic motions of a grain. We then develop a new way of vibrating the system allowing for random accelerations smaller than gravity. Using this method we study the evolution of the free surface as well as results from a light scattering method for a 3D model system. The final aim of these experiments is to investigate the ideas of effective temperature on the one hand as a function of inherent states and on the other hand using fluctuation dissipation relations.Comment: Contribution to the volume "Unifying Concepts in Granular Media and Glasses", edt.s A. Coniglio, A. Fierro, H.J. Herrmann and M. Nicodem

    Glycoprotein IIb/IIIa Inhibitors Use and Outcome after Percutaneous Coronary Intervention for Non-ST Elevation Myocardial Infarction

    Get PDF
    Aims. We investigate the effect of glycoprotein IIb/IIIa (GP IIb/IIIa) inhibitors on long-term outcomes following percutaneous coronary intervention (PCI) after non-ST elevation myocardial infarction (NSTEMI). Meta-analyses indicate that these agents are associated with improved short-term outcomes. However, many trials were undertaken before the routine use of P2Y12 inhibitors. Recent studies yield conflicting results and registry data have suggested that GP IIb/IIIa inhibitors may cause more bleeding than what trials indicate. Methods and Results. This retrospective observational study involves 3047 patients receiving dual-antiplatelet therapy who underwent PCI for NSTEMI. Primary outcome was all-cause mortality. Major adverse cardiac events (MACE) were a secondary outcome. Mean follow-up was 4.6 years. Patients treated with GP IIb/IIIa inhibitors were younger with fewer comorbidities. Although the unadjusted Kaplan-Meier analysis suggested that GP IIb/IIIa inhibitor use was associated with improved outcomes, multivariate analysis (including propensity scoring) showed no benefit for either survival (P=0.136) or MACE (P=0.614). GP IIb/IIIa inhibitor use was associated with an increased risk of major bleeding (P=0.021). Conclusion. Although GP IIb/IIIa inhibitor use appeared to improve outcomes after PCI for NSTEMI, patients who received GP IIb/IIIa inhibitors tended to be at lower risk. After multivariate adjustment we observed no improvement in MACE or survival and an increased risk of major bleeding

    Oscillations of the circadian clock protein, BMAL-1, align to daily cycles of mechanical stimuli: a novel means to integrate biological time within predictive in vitro model systems

    Get PDF
    PURPOSE: In vivo, the circadian clock drives 24-h rhythms in human physiology. Isolated cells in vitro retain a functional clockwork but lack necessary timing cues resulting in the rapid loss of tissue-level circadian rhythms. This study tests the hypothesis that repeated daily mechanical stimulation acts as a timing cue for the circadian clockwork. The delineation and integration of circadian timing cues into predictive in vitro model systems, including organ-on-a-chip (OOAC) devices, represent a novel concept that introduces a key component of in vivo physiology into predictive in vitro model systems. METHODS: Quiescent bovine chondrocytes were entrained for 3 days by daily 12-h bouts of cyclic biaxial tensile strain (10%, 0.33 Hz, Flexcell) before sampling during free-running conditions. The core clock protein, BMAL-1, was quantified from normalised Western Blot signal intensity and the temporal oscillations characterised by Cosinor linear fit with 24-h period. RESULTS: Following entrainment, the cell-autonomous oscillations of the molecular clock protein, BMAL-1, exhibited circadian (24 h) periodicity (p < 0.001) which aligned to the diurnal mechanical stimuli. A 6-h phase shift in the mechanical entrainment protocol resulted in an equivalent shift of the circadian clockwork. Thus, repeated daily mechanical stimuli synchronised circadian rhythmicity of chondrocytes in vitro. CONCLUSION: This work demonstrates that daily mechanical stimulation can act as a timing cue that is sufficient to entrain the peripheral circadian clock in vitro. This discovery may be exploited to induce and sustain circadian physiology within into predictive in vitro model systems, including OOAC systems. Integration of the circadian clock within these systems will enhance their potential to accurately recapitulate human diurnal physiology and hence augment their predictive value as drug testing platforms and as realistic models of human (patho)physiology. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s44164-022-00032-x

    Do mangrove forest restoration or rehabilitation activities return biodiversity to pre-impact levels?

    Get PDF
    Background Mangrove forest restoration and rehabilitation programs are increasingly undertaken to re-establish ecosystem services in the context of community-based biodiversity conservation. Restoration is returning a habitat to the most natural condition, whereas rehabilitation often focuses on optimising ecosystem services alongside biodiversity. With many different restoration and rehabilitation objectives and techniques existing, it is difficult to assess the general effectiveness of restoration and rehabilitation on biodiversity and ecosystem services. This systematic review protocol presents a methodology that will be used to assess the impacts of mangrove forest restoration and rehabilitation on biodiversity and provisioning ecosystem services in a global context. Methods This review will assess studies that have undertaken biodiversity surveys of restored and rehabilitated mangrove forests by comparing them against suitable mature reference mangrove forests within the same region, or surveys prior to degradation of the forest. This review will investigate how the age and initial tree diversity of a restoration or rehabilitation activities determine the effectiveness of these initiatives. Taxa of commercial value to local communities will be assessed to identify whether rehabilitation for optimal ecosystem service provision is likely to conflict with the full restoration of mangrove forests

    Feline head trauma: a CT analysis of skull fractures and their management in 75 cats

    Get PDF
    The aim of this study was to describe and evaluate the configurations and management of feline skull fractures and concurrent injuries following head trauma

    Multi-Scale Simulation Modeling for Prevention and Public Health Management of Diabetes in Pregnancy and Sequelae

    Full text link
    Diabetes in pregnancy (DIP) is an increasing public health priority in the Australian Capital Territory, particularly due to its impact on risk for developing Type 2 diabetes. While earlier diagnostic screening results in greater capacity for early detection and treatment, such benefits must be balanced with the greater demands this imposes on public health services. To address such planning challenges, a multi-scale hybrid simulation model of DIP was built to explore the interaction of risk factors and capture the dynamics underlying the development of DIP. The impact of interventions on health outcomes at the physiological, health service and population level is measured. Of particular central significance in the model is a compartmental model representing the underlying physiological regulation of glycemic status based on beta-cell dynamics and insulin resistance. The model also simulated the dynamics of continuous BMI evolution, glycemic status change during pregnancy and diabetes classification driven by the individual-level physiological model. We further modeled public health service pathways providing diagnosis and care for DIP to explore the optimization of resource use during service delivery. The model was extensively calibrated against empirical data.Comment: 10 pages, SBP-BRiMS 201

    Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells

    Full text link
    © 2017 Huff et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Introduction: The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Materials and methods: Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. Results: HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Conclusions: Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines

    Development and mining of a database of historic European paper properties

    Get PDF
    A database of historic paper properties was developed using 729 samples of European origin (1350–1990), analysed for acidity, degree or polymerisation (DP), molecular weight of cellulose, grammage, tensile strength, as well as contents of ash, aluminium, carbonyl groups, rosin, protein, lignin and fibre furnish. Using Spearman’s rank correlation coefficient and principal component analysis, the data were examined with respect to methods of manufacture, as well as chemical stability of paper. Novel patterns emerged related to loss of DP and accumulation of carbonyl groups and acidity with time and the role of lignin and rosin, as well as rate of degradation (k = 10−5 year−1) at room conditions. In-depth understanding of long-term degradation of lignin and rosin is needed to better understand the relationships between composition and degradation of historic paper. This study highlights the importance of mining significant volumes of analytical data, and its variability, obtained from real historic objects
    corecore