518 research outputs found

    Parameters of Context-Induced EtOH-Seeking in Alcohol-Preferring (P) Rats: Temporal Analysis, Effects of Repeated Deprivation and Ethanol Priming Injections

    Get PDF
    Background Drug-paired environments can act as stimuli that elicit drug craving. In humans, drug craving is influenced by the amount of time abstinent, number of past periods of abstinence, and inadvertent exposure to the previously abused drug. The current experiments were designed to determine the effects of (a) the duration of abstinence on expression of EtOH-seeking; (b) EtOH priming following a short and long abstinence period; and (c) repeated deprivation cycles on relapse drinking and EtOH-seeking. Methods Rats were allowed to self-administer 15% ethanol (EtOH), processed through extinction training, maintained in a home cage for a designated EtOH-free period, and then reintroduced to the operant context in the absence of EtOH. The experiments examined the effects of: 1) various home cage duration periods (1 to 8 weeks), 2) priming injections of EtOH in the Pavlovian Spontaneous Recovery (PSR; 14 days after extinction) and Reinstatement of Responding (RoR; I day after extinction) models, and 3) exposure to repeated cycles of EtOH access-deprivation on relapse drinking and EtOH-seeking behavior. Results Highest expression of EtOH-seeking was observed following 6 weeks of home-cage maintenance. Priming injections of EtOH were more efficacious at stimulating/enhancing EtOH-seeking in the PSR than RoR model. Exposure to repeated cycles of EtOH deprivation and access enhanced and prolonged relapse drinking and the expression of EtOH-seeking (318 Ā± 22 responses), which was not observed in rats given equivalent consistent exposure to EtOH (66 Ā± 11 responses). Discussion Overall, the data indicated that the PSR model has ecological validity; factors that enhance EtOH craving in humans enhance the expression of EtOH seeking in the PSR test. The data also detail factors that need to be examined to determine the biological basis of EtOH-seeking (e.g., neuroadaptations that occur during the incubation period and following repeated cycles of EtOH drinking and abstinence)

    The genetic basis for adaptation of model-designed syntrophic co-cultures.

    Get PDF
    Understanding the fundamental characteristics of microbial communities could have far reaching implications for human health and applied biotechnology. Despite this, much is still unknown regarding the genetic basis and evolutionary strategies underlying the formation of viable synthetic communities. By pairing auxotrophic mutants in co-culture, it has been demonstrated that viable nascent E. coli communities can be established where the mutant strains are metabolically coupled. A novel algorithm, OptAux, was constructed to design 61 unique multi-knockout E. coli auxotrophic strains that require significant metabolite uptake to grow. These predicted knockouts included a diverse set of novel non-specific auxotrophs that result from inhibition of major biosynthetic subsystems. Three OptAux predicted non-specific auxotrophic strains-with diverse metabolic deficiencies-were co-cultured with an L-histidine auxotroph and optimized via adaptive laboratory evolution (ALE). Time-course sequencing revealed the genetic changes employed by each strain to achieve higher community growth rates and provided insight into mechanisms for adapting to the syntrophic niche. A community model of metabolism and gene expression was utilized to predict the relative community composition and fundamental characteristics of the evolved communities. This work presents new insight into the genetic strategies underlying viable nascent community formation and a cutting-edge computational method to elucidate metabolic changes that empower the creation of cooperative communities

    Active-Site Inhibitors of mTOR Target Rapamycin-Resistant Outputs of mTORC1 and mTORC2

    Get PDF
    The mammalian target of rapamycin (mTOR) regulates cell growth and survival by integrating nutrient and hormonal signals. These signaling functions are distributed between at least two distinct mTOR protein complexes: mTORC1 and mTORC2. mTORC1 is sensitive to the selective inhibitor rapamycin and activated by growth factor stimulation via the canonical phosphoinositide 3-kinase (PI3K)ā†’Aktā†’mTOR pathway. Activated mTORC1 kinase up-regulates protein synthesis by phosphorylating key regulators of mRNA translation. By contrast, mTORC2 is resistant to rapamycin. Genetic studies have suggested that mTORC2 may phosphorylate Akt at S473, one of two phosphorylation sites required for Akt activation; this has been controversial, in part because RNA interference and gene knockouts produce distinct Akt phospho-isoforms. The central role of mTOR in controlling key cellular growth and survival pathways has sparked interest in discovering mTOR inhibitors that bind to the ATP site and therefore target both mTORC2 and mTORC1. We investigated mTOR signaling in cells and animals with two novel and specific mTOR kinase domain inhibitors (TORKinibs). Unlike rapamycin, these TORKinibs (PP242 and PP30) inhibit mTORC2, and we use them to show that pharmacological inhibition of mTOR blocks the phosphorylation of Akt at S473 and prevents its full activation. Furthermore, we show that TORKinibs inhibit proliferation of primary cells more completely than rapamycin. Surprisingly, we find that mTORC2 is not the basis for this enhanced activity, and we show that the TORKinib PP242 is a more effective mTORC1 inhibitor than rapamycin. Importantly, at the molecular level, PP242 inhibits cap-dependent translation under conditions in which rapamycin has no effect. Our findings identify new functional features of mTORC1 that are resistant to rapamycin but are effectively targeted by TORKinibs. These potent new pharmacological agents complement rapamycin in the study of mTOR and its role in normal physiology and human disease

    Co-administration of ethanol and nicotine: the enduring alterations in the rewarding properties of nicotine and glutamate activity within the mesocorticolimbic system of female alcohol-preferring (P) rats

    Get PDF
    RATIONALE: The co-abuse of ethanol (EtOH) and nicotine (NIC) increases the likelihood that an individual will relapse to drug use while attempting to maintain abstinence. There is limited research examining the consequences of long-term EtOH and NIC co-abuse. OBJECTIVES: The current experiments determined the enduring effects of chronic EtOH, NIC, or EtOH + NIC intake on the reinforcing properties of NIC and glutamate (GLU) activity within the mesocorticolimbic (MCL) system. METHODS: Alcohol-preferring (P) rats self-administered EtOH, Sacc + NIC, or EtOH + NIC combined for 10 weeks. The reinforcing properties of 0.1-3.0 Ī¼M NIC within the nucleus accumbens shell (AcbSh) were assessed following a 2-3-week drug-free period using intracranial self-administration (ICSA) procedures. The effects of EtOH, Sacc, Sacc + NIC, or EtOH + NIC intake on extracellular levels and clearance of glutamate (GLU) in the medial prefrontal cortex (mPFC) were also determined. RESULTS: Binge intake of EtOH (96-100 mg%) and NIC (21-27 mg/mL) were attained. All groups of P rats self-infused 3.0 Ī¼M NIC directly into the AcbSh, whereas only animals in the EtOH + NIC co-abuse group self-infused the 0.3 and 1.0 Ī¼M NIC concentrations. Additionally, self-administration of EtOH + NIC, but not EtOH, Sacc or Sacc + NIC, resulted in enduring increases in basal extracellular GLU levels in the mPFC. CONCLUSIONS: Overall, the co-abuse of EtOH + NIC produced enduring neuronal alterations within the MCL which enhanced the rewarding properties of NIC in the AcbSh and elevated extracellular GLU levels within the mPFC

    Coā€administration of ethanol and nicotine heightens sensitivity to ethanol reward within the nucleus accumbens (NAc) shell and increasing NAc shell BDNF is sufficient to enhance ethanol reward in naĆÆve Wistar rats

    Get PDF
    Alcohol use disorder most commonly presents as a polydrug disorder where greater than 85% are estimated to smoke. EtOH and nicotine (NIC) coā€abuse or exposure results in unique neuroadaptations that are linked to behaviors that promote drug use. The current experiments aimed to identify neuroadaptations within the mesolimbic pathway produced by concurrent EtOH and NIC exposure. The experiments used four overall groups of male Wistar rats consisting of vehicle, EtOH or NIC alone, and EtOH+NIC. Drug exposure through direct infusion into the posterior ventral tegmental area (pVTA) stimulated release of glutamate and dopamine in the nucleus accumbens (NAc) shell, which was quantified through highā€performance liquid chromatography. Additionally, brainā€derived neurotrophic factor (BDNF) protein levels were measured via enzymeā€linked immunosorbent assay (ELISA). A second experiment investigated the effects of drug pretreatment within the pVTA on the reinforcing properties of EtOH within the NAc shell through intracranial selfā€administration (ICSA). The concluding experiment evaluated the effect of NAc shell pretreatment with BDNF on EtOH reward utilizing ICSA within that region. The data indicated that only EtOH+NIC administration into the pVTA simultaneously increased glutamate, dopamine, and BDNF in the NAc shell. Moreover, only pVTA pretreatment with EtOH+NIC enhanced the reinforcing properties of EtOH in the NAc shell. BDNF pretreatment in the NAc shell was also sufficient to enhance the reinforcing properties of EtOH in the NAc shell. The collected data suggest that concurrent EtOH+NIC exposure results in a distinct neurochemical response and neuroadaptations within the mesolimbic pathway that alter EtOH reward

    Selective breeding for high alcohol consumption and response to nicotine: locomotor activity, dopaminergic in the mesolimbic system, and innate genetic differences in male and female alcohol-preferring, non-preferring, and replicate lines of high-alcohol drinking and low-alcohol drinking rats

    Get PDF
    Rationale There is evidence for a common genetic link between alcohol and nicotine dependence. Rodents selectively bred for high alcohol consumption/responsivity are also more likely to self-administer nicotine than controls. Objectives The experiments examined the response to systemic nicotine, the effects of nicotine within the drug reward pathway, and innate expression of nicotine-related genes in a brain region regulating drug reward/self-administration in multiple lines of rats selectively bred for high and low alcohol consumption. Methods The experiments examined the effects of systemic administration of nicotine on locomotor activity, the effects of nicotine administered directly into the (posterior ventral tegmental area; pVTA) on dopamine (DA) release in the nucleus accumbens shell (AcbSh), and innate mRNA levels of acetylcholine receptor genes in the pVTA were determined in 6 selectively bred high/low alcohol consuming and Wistar rat lines. Results The high alcohol-consuming rat lines had greater nicotine-induced locomotor activity compared to low alcohol-consuming rat lines. Microinjections of nicotine into the pVTA resulted in DA release in the AcbSh with the dose response curves for high alcohol-consuming rats shifted leftward and upward. Genetic analysis of the pVTA indicated P rats expressed higher levels of Ī±2 and Ī²4. Conclusion Selective breeding for high alcohol preference resulted in a genetically divergent behavioral and neurobiological sensitivity to nicotine. The observed behavioral and neurochemical differences between the rat lines would predict an increased likelihood of nicotine reinforcement. The data support the hypothesis of a common genetic basis for drug addiction and identifies potential receptor targets

    Peri-adolescent alcohol consumption increases sensitivity and dopaminergic response to nicotine during adulthood in female alcohol-preferring (P) rats: alterations to Ī±7 nicotinic acetylcholine receptor expression

    Get PDF
    Adolescent alcohol drinking has been linked to increased risk for drug abuse during adulthood. Nicotine microinjected directly into the posterior ventral tegmental area (pVTA) stimulates dopamine (DA) release in the nucleus accumbens (NAc) shell. The Ī±7 nicotinic acetylcholine receptor (nAChR) is a potent regulator of dopaminergic activity in the pVTA. The current experiments examined the effects of peri-adolescent ethanol (EtOH) drinking on the ability of intra-pVTA nicotine to stimulate DA release during adulthood and alterations in Ī±7 nAChR expression within the pVTA. Alcohol-preferring (P) female rats consumed EtOH and/or water during adolescence (post-natal day [PND] 30ā€“60) or adulthood (PND 90ā€“120). Thirty days following removal of EtOH, subjects received microinjections of 1 Ī¼M, 10 Ī¼M, or 50 Ī¼M nicotine into the pVTA concurrently with microdialysis for extracellular DA in the NAc shell. Brains were harvested from an additional cohort after PND 90 for quantification of Ī±7 nAChR within the pVTA. The results indicated that only adolescent EtOH consumption produced a leftward and upward shift in the dose response curve for nicotine to stimulate DA release in the NAc shell. Investigation of Ī±7 nAChR expression within the pVTA revealed a significant increase in animals that consumed EtOH during adolescence compared to naĆÆve animals. The data suggests that peri-adolescent EtOH consumption produced cross-sensitization to the effects of nicotine during adulthood. The interaction between adolescent EtOH consumption and inflated adult risk for drug dependency could be predicated, at least in part, upon alterations in Ī±7 nAChR expression within the mesolimbic reward pathway
    • ā€¦
    corecore