9 research outputs found

    Monoclonal antibodies against the human lymphocyte differentiation antigen CD 76 bind to gangliosides

    Get PDF
    AbstractTwo monoclonal antibodies, HD 66 and CRIS-4, by which the new CD 76 B-cell-associated cluster was defined, bound to several gangliosides (sialic acid containing glycolipids) of different polarity. One of the gangliosides recognized by HD 66 could be identified as NeuAcα2-6Galβl-4GlcNAcβl-3Galβl-4Glc-βl-l'Cer. This antigen was enzymatically synthesized. Sialidase treatment of the ganglioside antigens abolished binding of HD 66 and CRIS-4

    Acetylation Suppresses the Proapoptotic Activity of GD3 Ganglioside

    Get PDF
    GD3 synthase is rapidly activated in different cell types after specific apoptotic stimuli. De novo synthesized GD3 accumulates and contributes to the apoptotic program by relocating to mitochondrial membranes and inducing the release of apoptogenic factors. We found that sialic acid acetylation suppresses the proapoptotic activity of GD3. In fact, unlike GD3, 9-O-acetyl-GD3 is completely ineffective in inducing cytochrome c release and caspase-9 activation on isolated mitochondria and fails to induce the collapse of mitochondrial transmembrane potential and cellular apoptosis. Moreover, cells which are resistant to the overexpression of the GD3 synthase, actively convert de novo synthesized GD3 to 9-O-acetyl-GD3. The coexpression of GD3 synthase with a viral 9-O-acetyl esterase, which prevents 9-O-acetyl-GD3 accumulation, reconstitutes GD3 responsiveness and apoptosis. Finally, the expression of the 9-O-acetyl esterase is sufficient to induce apoptosis of glioblastomas which express high levels of 9-O-acetyl-GD3. Thus, sialic acid acetylation critically controls the proapoptotic activity of GD3

    The human H3N2 influenza viruses A/Victoria/3/75 and A/Hiroshima/52/2005 preferentially bind to alpha 2-3-sialylated monosialogangliosides with fucosylated poly-N-acetyllactosaminyl chains

    No full text
    Meisen I, Dzudzek T, Ehrhardt C, et al. The human H3N2 influenza viruses A/Victoria/3/75 and A/Hiroshima/52/2005 preferentially bind to alpha 2-3-sialylated monosialogangliosides with fucosylated poly-N-acetyllactosaminyl chains. Glycobiology. 2012;22(8):1055-1076.Among influenza A viruses, subtype H3N2 is the major cause of human influenza morbidity and is associated with seasonal epidemics causing annually half million deaths worldwide. Influenza A virus infection is initiated via hemagglutinin that binds to terminally sialylated glycoconjugates exposed on the surface of target cells. Gangliosides from human granulocytes were probed using thin-layer chromatography overlay assays for their binding potential to H3N2 virus strains A/Victoria/3/75 and A/Hiroshima/52/2005. Highly polar gangliosides with poly-N-acetyllactosaminyl chains showing low chromatographic mobility exhibited strong virus adhesion which was entirely abolished by sialidase treatment. Auxiliary overlay assays using anti-sialyl Lewis(x) (sLe(x)) monoclonal antibodies showed identical binding patterns compared with those performed with the viruses. A comprehensive structural analysis of fractionated gangliosides by electrospray ionization quadrupole time-of-flight mass spectrometry revealed sLe(x) gangliosides with terminal Neu5Ac alpha 2-3Gal beta 1-4(Fuc alpha 1-3)GlcNAc epitope and extended neolacto (nLc)-series core structures as the preferential virus binding gangliosides. More precisely, sLe(x) gangliosides with nLc8, nLc10 and nLc12Cer cores, carrying sphingosine (d18:1) and a fatty acid with variable chain length (mostly C24:0, C24:1 or C16:0) in the ceramide moiety and one or two additional internal fucose residues in the oligosaccharide portion, were identified as the preferred receptors recognized by H3N2 virus strains A/Victoria/3/75 and A/Hiroshima/52/2005. This study describes glycan-binding requirements of hemagglutinin beyond binding to glycans with a specific sialic acid linkage of as yet undefined neutrophil receptors acting as ligands for H3N2 viruses. In addition, our results pose new questions on the biological and clinical relevance of this unexpected specificity of a subtype of influenza A viruses

    Literaturverzeichnis

    No full text
    corecore