25 research outputs found

    Third Report on Chicken Genes and Chromosomes 2015

    Get PDF
    Following on from the First Report on Chicken Genes and Chromosomes [Schmid et al., 2000] and the Second Report in 2005 [Schmid et al., 2005], we are pleased to publish this long-awaited Third Report on the latest developments in chicken genomics. The First Report highlighted the availability of genetic and physical maps, while the Second Report was published as the chicken genome sequence was released. This report comes at a time of huge technological advances (particularly in sequencing methodologies) which have allowed us to examine the chicken genome in detail not possible until now. This has also heralded an explosion in avian genomics, with the current availability of more than 48 bird genomes [Zhang G et al., 2014b; Eöry et al., 2015], with many more planned

    [Avian cytogenetics goes functional] Third report on chicken genes and chromosomes 2015

    Get PDF
    High-density gridded libraries of large-insert clones using bacterial artificial chromosome (BAC) and other vectors are essential tools for genetic and genomic research in chicken and other avian species... Taken together, these studies demonstrate that applications of large-insert clones and BAC libraries derived from birds are, and will continue to be, effective tools to aid high-throughput and state-of-the-art genomic efforts and the important biological insight that arises from them

    Recovery of SARS-CoV-2 from Wastewater Using Centrifugal Ultrafiltration

    No full text
    The COVID-19 pandemic is a global crisis and continues to impact communities as the disease spreads. Clinical testing alone provides a snapshot of infected individuals but is costly and difficult to perform logistically across whole populations. The virus which causes COVID-19, SARS-CoV-2, is shed in human feces and urine and can be detected in human waste. SARS-CoV-2 can be shed in high concentrations (>107 genomic copies/mL) due to its ability to replicate in the gastrointestinal tract of humans through attachment to the angiotensin-converting enzyme 2 (ACE-2) receptors there. Monitoring wastewater for SARS-CoV-2, alongside clinical testing, can more accurately represent the spread of disease within a community. This protocol describes a reliable and efficacious method to recover SARS-CoV-2 in wastewater, quantify genomic RNA levels, and evaluate concentration fluctuations over time. Using this protocol, viral levels as low as 10 genomic copies/mL were successfully detected from 30 mL of wastewater in more than seven-hundred samples collected between August 2020 and March 2021. Through the adaptation of traditional enteric virus methods used in food safety research, targets have been reliably detected with no inhibition of detection (RT-qPCR) observed in any sample processed. This protocol is currently used for surveillance of wastewater systems across New Castle County, Delaware

    Challenges and trends in manufacturing measurement technology - The "industrie 4.0" concept

    Get PDF
    Strategic considerations and publications dealing with the future of industrial production are significantly influenced these days by the concept of "Industrie 4.0". For this reason the field of measurement technology for industrial production must also tackle this concept when thinking about future trends and challenges in metrology. To this end, the Manufacturing Metrology Roadmap 2020 of the VDI/VDE Society for Measurement and Automatic Control (GMA) was published in 2011 (VDI/VDE-GMA, 2011; Imkamp et al., 2012). The content of this roadmap is reviewed and extended here, covering new developments in the field of the Industrie 4.0 concept and presented with expanded and updated content

    Identification and Subtyping of <i>Salmonella</i> Isolates Using Matrix-Assisted Laser Desorption–Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF)

    No full text
    Subtyping of bacterial isolates of the same genus and species is an important tool in epidemiological investigations. A number of phenotypic and genotypic subtyping methods are available; however, most of these methods are labor-intensive and time-consuming and require considerable operator skill and a wealth of reagents. Matrix-Assisted Laser Desorption–Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF), an alternative to conventional subtyping methods, offers a rapid, reproducible method for bacterial identification with a high sensitivity and specificity and at minimal cost. The purpose of this study was to determine the feasibility of using MALDI-TOF to differentiate between six Salmonella serovars recovered from experimental microcosms inoculated with known strains of Salmonella. Following the establishment of a MALDI-TOF reference library for this project, the identity of 843 Salmonella isolates recovered from these microcosms was assessed using both MALDI-TOF and conventional methods (serotyping/PCR). All 843 isolates were identified as being Salmonella species. Overall, 803/843 (95%) of these isolates were identified similarly using the two different methods. Positive percent agreement at the serovar level ranged from 79 to 100%, and negative percent agreement for all serovars was greater than 98%. Cohen’s kappa ranged from 0.85 to 0.98 for the different serovars. This study demonstrates that MALDI-TOF is a viable alternative for the rapid identification and differentiation of Salmonella serovars

    Identification and Subtyping of Salmonella Isolates Using Matrix-Assisted Laser Desorption&ndash;Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF)

    No full text
    Subtyping of bacterial isolates of the same genus and species is an important tool in epidemiological investigations. A number of phenotypic and genotypic subtyping methods are available; however, most of these methods are labor-intensive and time-consuming and require considerable operator skill and a wealth of reagents. Matrix-Assisted Laser Desorption&ndash;Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF), an alternative to conventional subtyping methods, offers a rapid, reproducible method for bacterial identification with a high sensitivity and specificity and at minimal cost. The purpose of this study was to determine the feasibility of using MALDI-TOF to differentiate between six Salmonella serovars recovered from experimental microcosms inoculated with known strains of Salmonella. Following the establishment of a MALDI-TOF reference library for this project, the identity of 843 Salmonella isolates recovered from these microcosms was assessed using both MALDI-TOF and conventional methods (serotyping/PCR). All 843 isolates were identified as being Salmonella species. Overall, 803/843 (95%) of these isolates were identified similarly using the two different methods. Positive percent agreement at the serovar level ranged from 79 to 100%, and negative percent agreement for all serovars was greater than 98%. Cohen&rsquo;s kappa ranged from 0.85 to 0.98 for the different serovars. This study demonstrates that MALDI-TOF is a viable alternative for the rapid identification and differentiation of Salmonella serovars
    corecore