851 research outputs found

    A Test of the Collisional Dark Matter Hypothesis from Cluster Lensing

    Get PDF
    Spergel & Steinhardt proposed the possibility that the dark matter particles are self-interacting, as a solution to two discrepancies between the predictions of cold dark matter models and the observations: first, the observed dark matter distribution in some dwarf galaxies has large, constant-density cores, as opposed to the predicted central cusps; and second, small satellites of normal galaxies are much less abundant than predicted. The dark matter self-interaction would produce isothermal cores in halos, and would also expel the dark matter particles from dwarfs orbiting within large halos. However, another inevitable consequence of the model is that halos should become spherical once most particles have interacted. Here, I rule out this model by the fact that the innermost regions of dark matter halos in massive clusters of galaxies are elliptical, as shown by gravitational lensing and other observations. The absence of collisions in the lensing cores of massive clusters implies that any dark matter self-interaction is too weak to have affected the observed density profiles in the dark-matter dominated dwarf galaxies, or to have eased the destruction of dwarf satellites in galactic halos. If sxs_x is the cross section and mxm_x the mass of the dark matter particle, then s_x/m_x < 10^{-25.5} \cm^2/\gev.Comment: to appear in ApJ, January 1 200

    A search for clusters and groups of galaxies on the line of sight towards 8 lensed quasars

    Full text link
    In this paper we present new ESO/VLT FORS1 and ISAAC images of the fields around eight gravitationally lensed quasars: CTQ414, HE0230-2130, LBQS1009-0252, B1030+074, HE1104-1805, B1359+154, H1413+117 and HE2149-2745. When available and deep enough, HST/WFPC2 data were also used to infer the photometric redshifts of the galaxies around the quasars. The search of galaxy overdensities in space and redshift, as well as a weak-shear analysis and a mass reconstruction are presented in this paper. We find that there are most probably galaxy groups towards CTQ414, HE0230-2130, B1359+154, H1413+117 and HE2149-2745, with a mass ~ 4x10^14 M_sol h^-1. Considering its photometric redshift, the galaxy group discovered in the field around HE1104-1805 is associated with the quasar rather than with the lensing potential.Comment: 14 pages, 11 figures(.jpg

    Deep Convolutional Neural Networks as strong gravitational lens detectors

    Full text link
    Future large-scale surveys with high resolution imaging will provide us with a few 10510^5 new strong galaxy-scale lenses. These strong lensing systems however will be contained in large data amounts which are beyond the capacity of human experts to visually classify in a unbiased way. We present a new strong gravitational lens finder based on convolutional neural networks (CNNs). The method was applied to the Strong Lensing challenge organised by the Bologna Lens Factory. It achieved first and third place respectively on the space-based data-set and the ground-based data-set. The goal was to find a fully automated lens finder for ground-based and space-based surveys which minimizes human inspect. We compare the results of our CNN architecture and three new variations ("invariant" "views" and "residual") on the simulated data of the challenge. Each method has been trained separately 5 times on 17 000 simulated images, cross-validated using 3 000 images and then applied to a 100 000 image test set. We used two different metrics for evaluation, the area under the receiver operating characteristic curve (AUC) score and the recall with no false positive (Recall0FP\mathrm{Recall}_{\mathrm{0FP}}). For ground based data our best method achieved an AUC score of 0.9770.977 and a Recall0FP\mathrm{Recall}_{\mathrm{0FP}} of 0.500.50. For space-based data our best method achieved an AUC score of 0.9400.940 and a Recall0FP\mathrm{Recall}_{\mathrm{0FP}} of 0.320.32. On space-based data adding dihedral invariance to the CNN architecture diminished the overall score but achieved a higher no contamination recall. We found that using committees of 5 CNNs produce the best recall at zero contamination and consistenly score better AUC than a single CNN. We found that for every variation of our CNN lensfinder, we achieve AUC scores close to 11 within 6%6\%.Comment: 9 pages, accepted to A&

    Exploring the gravitationally lensed system HE 1104-1805: Near-IR Spectroscopy

    Get PDF
    (Abridged) A new technique for the spatial deconvolution of spectra is applied to near-IR (0.95 - 2.50 micron) NTT/SOFI spectra of the lensed, radio-quiet quasar HE 1104-1805. The continuum of the lensing galaxy is revealed between 1.5 and 2.5 micron. It is used in combination with previous optical and IR photometry to infer a plausible redshift in the range 0.8 < z < 1.2. Modeling of the system shows that the lens is probably composed of the red galaxy seen between the quasar images and a more extended component associated with a galaxy cluster with fairly low velocity dispersion (~ 575 km/s). The spectra of the two lensed images of the source show no trace of reddening at the redshift of the lens nor at the redshift of the source. Additionally, the difference between the spectrum of the brightest component a nd that of a scaled version of the faintest component is a featureless continuum. Broad and narrow emission lines, including the FeII features, are perfectly subtracted. The very good quality of our spectrum makes it possible to fit precisely the optical Fe II feature, taking into account the underlying continuum over a wide wavelength range. HE 1104-1805 can be classified as a weak Fe II emitter. Finally, the slope of the continuum in the brightest image is steeper than the continuum in the faintest image and supports the finding by Wisotzki et al. (1993) that the brightest image is microlensed. This is particularly interesting in view of the new source reconstruction methods from multiwavelength photometric monitoring.Comment: to be published in A&A, 8 pages, 9 postscript figure

    HST Observations of the Gravitationally Lensed Cloverleaf Broad Absorption Line QSO H1413+1143: Modeling the Lens

    Get PDF
    We investigate gravitational lens models for the quadruply-lensed Cloverleaf BAL QSO H1413+1143 based on the HST WFPC/WFPC2 astrometric and photometric data of the system by Turnshek et al. and the HST NICMOS-2 data by Falco et al. The accurate image positions and the dust-extinction-corrected relative amplifications, along with a possible detection of the lensing galaxy in the infrared, permit more accurate lens models than were previously possible. While more recent models are qualitatively consistent with the HST data, none of the previous models considered the dust-extinction-corrected relative amplifications of the image components. We use the power-law elliptical mass model to fit the HST data. We find that a single elliptical galaxy perturbed by an external shear can fit the image positions within the observational uncertainties; however, the predicted relative magnifications are only roughly consistent with the observational relative amplifications. We find that a primary galaxy combined with a secondary galaxy in the vicinity of the Cloverleaf or a cluster centered (south-)west of the Cloverleaf can fit both the image positions and relative amplifications within the observational uncertainties. We discuss future observations which could be used to test and/or further constrain lens models of the Cloverleaf.Comment: 23 pages (in aaspp.sty) including 5 tables and 3 figures, Accepted for publication in the Astrophysical Journa

    Catastrophic Photo-z Errors and the Dark Energy Parameter Estimates with Cosmic Shear

    Full text link
    We study the impact of catastrophic errors occurring in the photometric redshifts of galaxies on cosmological parameter estimates with cosmic shear tomography. We consider a fiducial survey with 9-filter set and perform photo-z measurement simulations. It is found that a fraction of 1% galaxies at z_{spec}~0.4 is misidentified to be at z_{phot}~3.5. We then employ both chi^2 fitting method and the extension of Fisher matrix formalism to evaluate the bias on the equation of state parameters of dark energy, w_0 and w_a, induced by those catastrophic outliers. By comparing the results from both methods, we verify that the estimation of w_0 and w_a from the fiducial 5-bin tomographic analyses can be significantly biased. To minimize the impact of this bias, two strategies can be followed: (A) the cosmic shear analysis is restricted to 0.5<z<2.5 where catastrophic redshift errors are expected to be insignificant; (B) a spectroscopic survey is conducted for galaxies with 3<z_{phot}<4. We find that the number of spectroscopic redshifts needed scales as N_{spec} \propto f_{cata}\times A where f_{cata}=1% is the fraction of catastrophic redshift errors (assuming a 9-filter photometric survey) and A is the survey area. For A=1000 {deg}^2, we find that N_{spec}>320 and 860 respectively in order to reduce the joint bias in (w_0,w_a) to be smaller than 2\sigma and 1\sigma. This spectroscopic survey (option B) will improve the Figure of Merit of option A by a factor \times 1.5 thus making such a survey strongly desirable.Comment: 25 pages, 9 figures. Revised version, as accepted for publication in Ap

    Composition of fish communities in macrotidal salt marshes of the Mont Saint-Michel bay (France)

    Get PDF
    At least 100 fish species are known to be present in the intertidal areas (estuaries, mudflats and salt marshes) of Mont Saint-Michel Bay. These and other comparable shallow marine coastal waters, such as estuaries and lagoons, play a nursery role for many fish species. However, in Europe little attention has been paid to the value of tidal salt marshes for fishes. Between March 1996 and April 1999, 120 tides were sampled in a tidal creek. A total of 31 species were caught. This community was largely dominated by mullets (Liza ramada represent 87% of the total biomass) and sand gobies(Pomatoschistus minutus and P. lozanoi represent 82% of the total numbers). These species and also Gasterosteus aculeatus, Syngnathus rostellatus, Dicentrarchus labrax, Mugil spp., Liza aurata and Sprattus sprattus were the most frequent species (>50% of monthly frequency of occurrence). In Europe, salt marshes and their creeks are flooded only during high spring tides. So, fishes only invade this environment during short immersion periods, and no species can be considered as marsh resident. But, the salt marsh was colonized by fish every time the tide reached the creek, and during the short time of flood, dominant fishes fed actively and exploited the high productivity. Nevertheless, this study shows that there is little interannual variation in the fish community and there are three ‘ seasons ’ in the fish fauna of the marsh. Marine straggler and marine estuarine dependent species colonize marshes between spring (recruitment period in the bay) and autumn before returning into deeper adjacent waters. Estuarine fishes are present all year round with maximum abundances in the end of summer. The presence of fishes confirms that this kind of wetland plays an important trophic and nursery role for these species. Differences in densities and stages distribution of these species into Mont Saint-Michel systems (tidal mudflats, estuaries and tidal salt marshes) can reduce the trophic competition

    Mass Distributions of HST Galaxy Clusters from Gravitational Arcs

    Full text link
    Although N-body simulations of cosmic structure formation suggest that dark matter halos have density profiles shallower than isothermal at small radii and steeper at large radii, whether observed galaxy clusters follow this profile is still ambiguous. We use one such density profile, the asymmetric NFW profile, to model the mass distributions of 11 galaxy clusters with gravitational arcs observed by HST. We characterize the galaxy lenses in each cluster as NFW ellipsoids, each defined by an unknown scale convergence, scale radius, ellipticity, and position angle. For a given set of values of these parameters, we compute the arcs that would be produced by such a lens system. To define the goodness of fit to the observed arc system, we define a chi^2 function encompassing the overlap between the observed and reproduced arcs as well as the agreement between the predicted arc sources and the observational constraints on the source system. We minimize this chi^2 to find the values of the lens parameters that best reproduce the observed arc system in a given cluster. Here we report our best-fit lens parameters and corresponding mass estimates for each of the 11 lensing clusters. We find that cluster mass models based on lensing galaxies defined as NFW ellipsoids can accurately reproduce the observed arcs, and that the best-fit parameters to such a model fall within the reasonable ranges defined by simulations. These results assert NFW profiles as an effective model for the mass distributions of observed clusters.Comment: Submitted to ApJ, 14 figures include
    corecore