657 research outputs found

    Deep Convolutional Neural Networks as strong gravitational lens detectors

    Full text link
    Future large-scale surveys with high resolution imaging will provide us with a few 10510^5 new strong galaxy-scale lenses. These strong lensing systems however will be contained in large data amounts which are beyond the capacity of human experts to visually classify in a unbiased way. We present a new strong gravitational lens finder based on convolutional neural networks (CNNs). The method was applied to the Strong Lensing challenge organised by the Bologna Lens Factory. It achieved first and third place respectively on the space-based data-set and the ground-based data-set. The goal was to find a fully automated lens finder for ground-based and space-based surveys which minimizes human inspect. We compare the results of our CNN architecture and three new variations ("invariant" "views" and "residual") on the simulated data of the challenge. Each method has been trained separately 5 times on 17 000 simulated images, cross-validated using 3 000 images and then applied to a 100 000 image test set. We used two different metrics for evaluation, the area under the receiver operating characteristic curve (AUC) score and the recall with no false positive (Recall0FP\mathrm{Recall}_{\mathrm{0FP}}). For ground based data our best method achieved an AUC score of 0.9770.977 and a Recall0FP\mathrm{Recall}_{\mathrm{0FP}} of 0.500.50. For space-based data our best method achieved an AUC score of 0.9400.940 and a Recall0FP\mathrm{Recall}_{\mathrm{0FP}} of 0.320.32. On space-based data adding dihedral invariance to the CNN architecture diminished the overall score but achieved a higher no contamination recall. We found that using committees of 5 CNNs produce the best recall at zero contamination and consistenly score better AUC than a single CNN. We found that for every variation of our CNN lensfinder, we achieve AUC scores close to 11 within 6%6\%.Comment: 9 pages, accepted to A&

    Lensed galaxies in Abell 370 I. Modeling the number counts and redshift distribution of background sources

    Get PDF
    We present new observations of the cluster-lens Abell 370: a deep HST/WFPC2 F675W image and ESO 3.6m spectroscopy of faint galaxies. These observations shade new lights on the statistical properties of faint lensed galaxies. In particular, we spectroscopically confirm the multiple image nature of the B2--B3 gravitational pair (Kneib et al. 1993), and determine a redshift of z=0.806 which is in very good agreement with earlier predictions. A refined mass model of the cluster core (that includes cluster galaxy halos) is presented, based on a number of newly identified multiple images. Following Bezecourt et al. (1998a), we combine the new cluster mass model with a spectrophotometric prescription for galaxy evolution to predict the arclets number counts and redshift distribution in the HST image. In particular, the ellipticity distribution of background sources is taken into account, in order to properly estimate the statistical number and redshift distribution of arclets. We show that the redshift distribution of arclets, and particularly its high redshift tail can be used as a strong constraint to disentangle different galaxy evolution scenario. A hierarchical model which includes a number density evolution is favored by our analysis. Finally, we compute the depletion curves in the faint galaxies number counts and discuss its wavelength dependence.Comment: 10 pages, Astronomy and Astrophysics in pres

    Spectroscopic confirmation of a cluster of galaxies at z=1 in the field of the gravitational lens MG2016+112

    Get PDF
    We present new optical data on the cluster AX J2019+1127 identified by the X-ray satellite ASCA at z\sim 1 (Hattori et al. 1997). The data suggest the presence of a high-redshift cluster of galaxies responsible for the large separation triple quasar MG2016+112. Our deep photometry reveals an excess of z\sim 1 galaxy candidates, as already suspected by Benitez et al. (1999). Our spectroscopic survey of 44 objects in the field shows an excess of 6 red galaxies securely identified at z \sim 1, with a mean redshift of z =1.005 +/- 0.002. We estimate a velocity dispersion of \sigma = 771 (+430/-160) km s(-1) based on these 6 galaxies and a V-band mass-to-light ratio of 215 (+308/-77) h_50 M/L_sol. Our observations thus confirm the existence of a massive structure acting as the lens, which explains the unusual configuration of the triple quasar. Hence, there is no more need to invoke the existence of a ``dark cluster'' to understand this lens system.Comment: 8 pages, 4 figures, uses aa.cls, accepted to Astronomy and Astrophysics with minor change

    Resolving the molecular gas around the lensed quasar RXJ0911.4+0551

    Full text link
    We report on high angular resolution observations of the CO(7-6) line and millimeter continuum in the host galaxy of the gravitationally lensed (z~2.8) quasar RXJ0911.4+0551 using the Plateau de Bure Interferometer. Our CO observations resolve the molecular disk of the source. Using a lens model based on HST observations we fit source models to the observed visibilities. We estimate a molecular disk radius of 1±\pm0.2 kpc and an inclination of 69±\pm6\deg, the continuum is more compact and is only marginally resolved by our observations. The relatively low molecular gas mass, Mgas=(2.3±0.5)×109Mgas=(2.3\pm 0.5)\times 10^{9} Msolar, and far infrared luminosity, LFIR=(7.2±1.5)×1011LFIR=(7.2\pm 1.5) \times 10^{11} Lsolar, of this quasar could be explained by its relatively low dynamical mass, Mdyn=(3.9±0.9)×109Mdyn=(3.9\pm 0.9)\times 10^9 Msolar. It would be a scaled-down version the QSOs usually found at high-z. The FIR and CO luminosities lie on the correlation found for QSOs from low to high redshifts and the gas-to-dust ratio (45±1745\pm 17) is similar to the one measured in the z=6.4 QSO, SDSS J1148+5251. Differential magnification affects the continuum-to-line luminosity ratio, the line profile and possibly the spectral energy distribution.Comment: Accepted for publication in A&A, revised after language editin

    A one-step spatial+ approach to mitigate spatial confounding in multivariate spatial areal models

    Full text link
    Ecological spatial areal models encounter the well-known and challenging problem of spatial confounding. This issue makes it arduous to distinguish between the impacts of observed covariates and spatial random effects. Despite previous research and various proposed methods to tackle this problem, finding a definitive solution remains elusive. In this paper, we propose a one-step version of the spatial+ approach that involves dividing the covariate into two components. One component captures large-scale spatial dependence, while the other accounts for short-scale dependence. This approach eliminates the need to separately fit spatial models for the covariates. We apply this method to analyze two forms of crimes against women, namely rapes and dowry deaths, in Uttar Pradesh, India, exploring their relationship with socio-demographic covariates. To evaluate the performance of the new approach, we conduct extensive simulation studies under different spatial confounding scenarios. The results demonstrate that the proposed method provides reliable estimates of fixed effects and posterior correlations between different responses

    Non-parametric mass reconstruction of A1689 from strong lensing data with SLAP

    Full text link
    We present the mass distribution in the central area of the cluster A1689 by fitting over 100 multiply lensed images with the non-parametric Strong Lensing Analysis Package (SLAP, Diego et al. 2004). The surface mass distribution is obtained in a robust way finding a total mass of 0.25E15 M_sun/h within a 70'' circle radius from the central peak. Our reconstructed density profile fits well an NFW profile with small perturbations due to substructure and is compatible with the more model dependent analysis of Broadhurst et al. (2004a) based on the same data. Our estimated mass does not rely on any prior information about the distribution of dark matter in the cluster. The peak of the mass distribution falls very close to the central cD and there is substructure near the center suggesting that the cluster is not fully relaxed. We also examine the effect on the recovered mass when we include the uncertainties in the redshift of the sources and in the original shape of the sources. Using simulations designed to mimic the data, we identify some biases in our reconstructed mass distribution. We find that the recovered mass is biased toward lower masses beyond 1 arcmin (150 kpc) from the central cD and that in the very center we may be affected by degeneracy problems. On the other hand, we confirm that the reconstructed mass between 25'' and 70'' is a robust, unbiased estimate of the true mass distribution and is compatible with an NFW profile.Comment: 11 pages, 12 figures. MNRAS submitted. A full resolution of the paper can be found in http://darwin.physics.upenn.edu/SLAP

    Detection of CO from SMM J16359+6612, The Multiply Imaged Submillimeter Galaxy Behind A2218

    Full text link
    We report the detection of CO (JJ=3→\to2) line emission from all three multiple images (A,B and C) of the intrinsically faint (≃\simeq 0.8 mJy) submillimeter-selected galaxy SMM J16359+6612. The brightest source of the submm continuum emission (B) also corresponds to the brightest CO emission, which is centered at zz=2.5168, consistent with the pre-existing redshift derived from \Ha. The observed CO flux in the A, B and C images is 1.2, 3.5 and 1.6 Jy \kms respectively, with a linewidth of 500±100500\pm 100 \kms. After correcting for the lensing amplification, the CO flux corresponds to a molecular gas mass of ∌2×1010h71−2\sim 2\times 10 ^{10} h_{71}^{-2} \Msun, while the extent of the CO emission indicates that the dynamical mass of the system ∌9×1010\sim9\times10^{10} \Msun. Two velocity components are seen in the CO spectra; these could arise from either a rotating compact ring or disk of gas, or merging substructure. The star formation rate in this galaxy was previously derived to be ∌\sim100--500 \Msun \yr. If all the CO emission arises from the inner few kpc of the galaxy and the galactic CO-to-H2_2 conversion factor holds, then the gas consumption timescale is a relatively short 40 Myr, and so the submm emission from SMM J16359+6612 may be produced by a powerful, but short-lived circumnuclear starburst event in an otherwise normal and representative high-redshift galaxy.Comment: Appearing in the 2004 October 10 issue of the Astrophysical Journal Letters, Volume 614, L5-L
    • 

    corecore