148 research outputs found

    Increasing partnerships between scientists and forest managers: Lessons from an ongoing interdisciplinary project in Quebec

    Get PDF
    Adaptive management presupposes stronger links between scientists and forest managers in order to adapt research processes and findings to production activities. Partnerships between these two groups are starting to emerge in the forest sector in Quebec. However, local forest managers have not always had the occasion in the past to contribute to research processes. Moreover, scientists have not always had the opportunity to harmonize all their respective research projects ar the local level. This research project was thus aimed ar establishing a link between local forest managers and scientists in order to direct research projects towards local needs and concerns. The purpose of establishing this contact between local forest managers and scientists was to create opportunities for inter-disciplinary research projects. This experiment demonstrated that the roles and attitudes of scientists and forest managers still need to evolve in order to increase the chances for successful partnerships between these two groups. On the one hand, forest managers need to view research (1) as part of their daily activities and (2) as bringing benefit in the long-term. On the other hand scientists must (1) invest time in understanding what the forest managers are doing and (2) consider forest managers as equal partners with useful knowledge and skills in developing the research questions and protocols

    Consequences of various landscape-scale ecosystem management strategies and fire cycles on age-class structure and harvest in boreal forests

    Get PDF
    At the landscape scale, one of the key indicators of sustainable forest management is the age-class distribution of stands, since it provides a coarse synopsis of habitat potential, structural complexity, and stand volume, and it is directly modified by timber extraction and wildfire. To explore the consequences of several landscape-scale boreal forest management strategies on age-class structure in the Mauricie region of Quebec, we used spatially explicit simulation modelling. Our study investigated three different harvesting strategies (the one currently practiced and two different strategies to maintain late seral stands) and interactions between fire and harvesting on stand age-class distribution. We found that the legacy of initial forested age structure and its spatial configuration can pose short- (<50 years) to medium-term (150-300 years) challenges to balancing wood supply and ecological objectives. Also, ongoing disturbance by fire, even at relatively long cycles in relation to historic levels, can further constrain the achievement of both timber and biodiversity goals. For example, when fire was combined with management, harvest shortfalls occurred in all scenarios with a fire cycle of 100 years and most scenarios with a fire cycle of 150 years. Even a fire cycle of 500 years led to a reduction in older forest when its maintenance was not a primary constraint. Our results highlight the need to consider the broad-scale effects of natural disturbance when developing ecosystem management policies and the importance of prioritizing objectives when planning for multiple resource use

    Peak radial growth of diffuse-porous species occurs during periods of lower water availability than for ring-porous and coniferous trees

    Get PDF
    Climate models project warmer summer temperatures will increase the frequency and heat severity of droughts in temperate forests of Eastern North America. Hotter droughts are increasingly documented to affect tree growth and forest dynamics, with critical impacts on tree mortality, carbon sequestration and timber provision. The growing acknowledgement of the dominant role of drought timing on tree vulnerability to water deficit raises the issue of our limited understanding of radial growth phenology for most temperate tree species. Here, we use well-replicated dendrometer band data sampled frequently during the growing season to assess the growth phenology of 610 trees from 15 temperate species over 6 years. Patterns of diameter growth follow a typical logistic shape, with growth rates reaching a maximum in June, and then decreasing until process termination. On average, we find that diffuse-porous species take 16-18 days less than other wood-structure types to put on 50% of their annual diameter growth. However, their peak growth rate occurs almost a full month later than ring-porous and conifer species (ca. 24 +/- 4 days; mean +/- 95% credible interval). Unlike other species, the growth phenology of diffuse-porous species in our dataset is highly correlated with their spring foliar phenology. We also find that the later window of growth in diffuse-porous species, coinciding with peak evapotranspiration and lower water availability, exposes them to a higher water deficit of 88 +/- 19 mm (mean +/- SE) during their peak growth than ring-porous and coniferous species (15 +/- 35 mm and 30 +/- 30 mm, respectively). Given the high climatic sensitivity of wood formation, our findings highlight the importance of wood porosity as one predictor of species climatic sensitivity to the projected intensification of the drought regime in the coming decades.Peer reviewe

    Forest dynamics following spruce budworm outbreaks in the northern and southern mixedwoods of central Quebec

    Get PDF
    The effects of 20th century spruce budworm (Choristoneura fumiferana (Clem.)) outbreaks on forest dynamics was examined in the southern and northern parts of the mixedwood forest zone in central Quebec, Canada. In each region, three study areas were placed in unmanaged stands that had not burned for more than 200 years. Disturbance impacts and forest succession were evaluated using aerial photographs and dendrochronology. Spruce budworm outbreaks occurred around 1910, 1950, and 1980 in both regions. The 1910 outbreak seemed to have limited impact in both regions, and the 1950 outbreak caused heavy mortality in conifer stands (mostly of balsam fir, Abies balsamea (L.) Mill.) in the southern region. The 1980 outbreak caused major mortality in the northern region, but had little impact in the southern region. Successive spruce budworm outbreaks led to a massive invasion by hardwood species in the last century in the southern region but not in the northern region. The reason for such contrasting dynamics between regions is unknown, but we hypothesize that differences in disturbance intensities, influenced by climate, played a major role. Results from this study emphasize that generalizations about the effect of spruce budworm outbreaks on forest dynamics cannot be derived from observations made during a single outbreak or at a single location

    Large-scale synchrony of gap dynamics and the distribution of understory tree species in maple-beech forests

    Get PDF
    Large-scale synchronous variations in community dynamics are well documented for a vast array of organisms, but are considerably less understood for forest trees. Because of temporal variations in canopy gap dynamics, forest communities—even old-growth ones—are never at equilibrium at the stand scale. This paucity of equilibrium may also be true at the regional scale. Our objectives were to determine (1) if nonequilibrium dynamics caused by temporal variations in the formation of canopy gaps are regionally synchronized, and (2) if spatiotemporal variations in canopy gap formation aVect the relative abundance of tree species in the understory. We examined these questions by analyzing variations in the suppression and release history of Acer saccharum Marsh. and Fagus grandifolia Ehrh. from 481 growth series of understory saplings taken from 34 mature stands. We observed that (1) the proportion of stems in release as a function of time exhibited a U-shaped pattern over the last 35 years, with the lowest levels occurring during 1975–1985, and that (2) the response to this in terms of species composition was that A. saccharum became more abundant at sites that had the highest proportion of stems in release during 1975–1985. We concluded that the understory dynamics, typically thought of as a stand-scale process, may be regionally synchronized

    Ligand diversity contributes to the full activation of the jasmonate pathway in Marchantia polymorpha

    Get PDF
    In plants, jasmonate signaling regulates a wide range of processes from growth and development to defense responses and thermotolerance. Jasmonates, such as jasmonic acid (JA), (+)-7-iso-jasmonoyl-l-isoleucine (JA-Ile), 12-oxo-10,15(Z)-phytodienoic acid (OPDA), and dinor-12-oxo-10,15(Z)-phytodienoic acid (dn-OPDA), are derived from C18 (18 Carbon atoms) and C16 polyunsaturated fatty acids (PUFAs), which are found ubiquitously in the plant kingdom. Bryophytes are also rich in C20 and C22 long-chain polyunsaturated fatty acids (LCPUFAs), which are found only at low levels in some vascular plants but are abundant in organisms of other kingdoms, including animals. The existence of bioactive jasmonates derived from LCPUFAs is currently unknown. Here, we describe the identification of an OPDA-like molecule derived from a C20 fatty acid (FA) in the liverwort Marchantia polymorpha (Mp), which we term (5Z,8Z)-10-(4-oxo-5-((Z)-pent-2-en-1-yl)cyclopent-2-en-1-yl)deca-5,8-dienoic acid (C20-OPDA). This molecule accumulates upon wounding and, when applied exogenously, can activate known Coronatine Insensitive 1 (COI1) -dependent and -independent jasmonate responses. Furthermore, we identify a dn-OPDA-like molecule (Δ4-dn-OPDA) deriving from C20-OPDA and demonstrate it to be a ligand of the jasmonate coreceptor (MpCOI1-Mp Jasmonate-Zinc finger inflorescence meristem domain [MpJAZ]) in Marchantia. By analyzing mutants impaired in the production of LCPUFAs, we elucidate the major biosynthetic pathway of C20-OPDA and Δ4-dn-OPDA. Moreover, using a double mutant compromised in the production of both Δ4-dn-OPDA and dn-OPDA, we demonstrate the additive nature of these molecules in the activation of jasmonate responses. Taken together, our data identify a ligand of MpCOI1 and demonstrate LCPUFAs as a source of bioactive jasmonates that are essential to the immune response of M. polymorpha.Peer reviewe

    The effects of spatial legacies following shifting management practices and fire on boreal forest age structure

    Get PDF
    Forest age structure and its spatial arrangement are important elements of sustainable forestry because of their effects on biodiversity and timber availability. Forest management objectives that include specific forest age structure may not be easily attained due to constraints imposed by the legacies of historical management and natural disturbance. We used a spatially explicit stochastic model to explore the synergetic effects of forest management and fire on boreal forest age structure. Specifically, we examined (1) the duration of spatial legacies of different management practices in the boreal forest, (2) how multiple shifts in management practices affect legacy duration and the spatial trajectories of forest age structure, and (3) how fire influences legacy duration and pattern development in combination with harvesting. Results based on 30 replicates of 500 years for each scenario indicate that (1) spatial legacies persist over 200 years and the rate at which legacies are overcome depends on whether new management targets are in synchrony with existing spatial pattern; (2) age specific goals were met faster after multiple management shifts due to the similar spatial scale of the preceding management types; (3) because large fires can erase the spatial pattern created by smaller disturbances, scenarios with fire had shorter lags than scenarios without fire. These results suggest that forest management goals can be accelerated by applying management at a similar spatial scale as existing spatial patterns. Also, management planning should include careful consideration of historical management as well as current and likely future disturbances

    MRI compared to conventional diagnostic work-up in the detection and evaluation of invasive lobular carcinoma of the breast: a review of existing literature

    Get PDF
    Item does not contain fulltextPURPOSE: The clinical diagnosis and management of invasive lobular carcinoma (ILC) of the breast presents difficulties. Magnetic resonance imaging (MRI) has been proposed as the imaging modality of choice for the evaluation of ILC. Small studies addressing different aspects of MRI in ILC have been presented but no large series to date. To address the usefulness of MRI in the work-up of ILC, we performed a review of the currently published literature. MATERIALS AND METHODS: We performed a literature search using the query "lobular AND (MRI OR MR OR MRT OR magnetic)" in the Cochrane library, PubMed and scholar.google.com, to retrieve all articles that dealt with the use of MRI in patients with ILC. We addressed sensitivity, morphologic appearance, correlation with pathology, detection of additional lesions, and impact of MRI on surgery as different endpoints. Whenever possible we performed meta-analysis of the pooled data. RESULTS: Sensitivity is 93.3% and equal to overall sensitivity of MRI for malignancy in the breast. Morphologic appearance is highly heterogeneous and probably heavily influenced by interreader variability. Correlation with pathology ranges from 0.81 to 0.97; overestimation of lesion size occurs but is rare. In 32% of patients, additional ipsilateral lesions are detected and in 7% contralateral lesions are only detected by MRI. Consequently, MRI induces change in surgical management in 28.3% of cases. CONCLUSION: This analysis indicates MRI to be valuable in the work-up of ILC. It provides additional knowledge that cannot be obtained by conventional imaging modalities which can be helpful in patient treatment

    Overstory influences on light attenuation patterns and understory plant community diversity and composition in southern boreal forests of Quebec

    Get PDF
    We have characterized overstory light transmission, understory light levels, and plant communities in mixedwood boreal forests of northwestern Quebec with the objective of understanding how overstory light transmission interacts with composition and time since disturbance to influence the diversity and composition of understory vegetation, and, in turn, the further attenuation of light to the forest floor by the understory. Overstory light transmission differed among three forest types (aspen, mixed deciduous-conifer, and old cedar-dominated), with old forests having higher proportions of high light levels than aspen and mixed forests, which were characterized by intermediate light levels. The composition of the understory plant communities in old forests showed the weakest correlation to overstory light transmission, although those forests had the largest range of light transmission. The strongest correlation between characteristics of overstory light transmission and understory communities was found in aspen forests. Species diversity indices were consistently higher in aspen forests but showed weak relationships with overstory light transmission. Light attenuation by the understory vegetation and total height of the understory vegetation were strongly and positively related to overstory light transmission but not forest type. Therefore, light transmission through the overstory influenced the structure and function of understory plants more than their diversity and composition. This is likely due to the strong effect of the upper understory layers, which tend to homogenize light levels at the forest floor regardless of forest type. The understory plant community acts as a filter, thereby reducing light levels at the forest floor to uniformly low levels
    • 

    corecore