1,297 research outputs found

    A Research and Strategy of Remote Sensing Image Denoising Algorithms

    Full text link
    Most raw data download from satellites are useless, resulting in transmission waste, one solution is to process data directly on satellites, then only transmit the processed results to the ground. Image processing is the main data processing on satellites, in this paper, we focus on image denoising which is the basic image processing. There are many high-performance denoising approaches at present, however, most of them rely on advanced computing resources or rich images on the ground. Considering the limited computing resources of satellites and the characteristics of remote sensing images, we do some research on these high-performance ground image denoising approaches and compare them in simulation experiments to analyze whether they are suitable for satellites. According to the analysis results, we propose two feasible image denoising strategies for satellites based on satellite TianZhi-1.Comment: 9 pages, 4 figures, ICNC-FSKD 201

    Long term global trends in open access. A data paper

    Get PDF
    Studies on long term trends in open access are of interest for the assessment of the evolution of scientific publishing and related markets. We therefore compiled and analysed a data set that integrated Web of Science as a global bibliographic data source on internationally relevant publications with data from Unpaywall, the primary provider of information related to open access at publication level. Data were captured in 2021 and show the open access categories as defined by Unpaywall for the publication years 2000 to 2020. In these two decades open access has gained substantial momentum. Starting with a few per cent, it now covers roughly half of the publications when embargo periods are over. The comparison of four variants of subsets of these data, however, show the wide variability in absolute and relative numbers. Results depend heavily on the characteristics of the data sources and the subsets selected within these. Major factors are listed and discussed. Aggregated data are provided in the MPG data repository

    Mitochondrial genome sequences illuminate maternal lineages of conservation concern in a rare carnivore

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Science-based wildlife management relies on genetic information to infer population connectivity and identify conservation units. The most commonly used genetic marker for characterizing animal biodiversity and identifying maternal lineages is the mitochondrial genome. Mitochondrial genotyping figures prominently in conservation and management plans, with much of the attention focused on the non-coding displacement ("D") loop. We used massively parallel multiplexed sequencing to sequence complete mitochondrial genomes from 40 fishers, a threatened carnivore that possesses low mitogenomic diversity. This allowed us to test a key assumption of conservation genetics, specifically, that the D-loop accurately reflects genealogical relationships and variation of the larger mitochondrial genome.</p> <p>Results</p> <p>Overall mitogenomic divergence in fishers is exceedingly low, with 66 segregating sites and an average pairwise distance between genomes of 0.00088 across their aligned length (16,290 bp). Estimates of variation and genealogical relationships from the displacement (<it>D</it>) loop region (299 bp) are contradicted by the complete mitochondrial genome, as well as the protein coding fraction of the mitochondrial genome. The sources of this contradiction trace primarily to the near-absence of mutations marking the D-loop region of one of the most divergent lineages, and secondarily to independent (recurrent) mutations at two nucleotide position in the D-loop amplicon.</p> <p>Conclusions</p> <p>Our study has two important implications. First, inferred genealogical reconstructions based on the fisher D-loop region contradict inferences based on the entire mitogenome to the point that the populations of greatest conservation concern cannot be accurately resolved. Whole-genome analysis identifies Californian haplotypes from the northern-most populations as highly distinctive, with a significant excess of amino acid changes that may be indicative of molecular adaptation; D-loop sequences fail to identify this unique mitochondrial lineage. Second, the impact of recurrent mutation appears most acute in closely related haplotypes, due to the low level of evolutionary signal (unique mutations that mark lineages) relative to evolutionary noise (recurrent, shared mutation in unrelated haplotypes). For wildlife managers, this means that the populations of greatest conservation concern may be at the highest risk of being misidentified by D-loop haplotyping. This message is timely because it highlights the new opportunities for basing conservation decisions on more accurate genetic information.</p

    Eur J Human Genet

    No full text
    Heterozygous missense mutations in the serine-threonine kinase receptor BMPR1B result typically in brachydactyly type A2 (BDA2), whereas mutations in the corresponding ligand GDF5 cause brachydactyly type C (BDC). Mutations in the GDF inhibitor Noggin (NOG) or activating mutations in GDF5 cause proximal symphalangism (SYM1). Here, we describe a novel mutation in BMPR1B (R486Q) that is associated with either BDA2 or a BDC/SYM1-like phenotype. Functional investigations of the R486Q mutation were performed and compared with the previously reported BDA2-causing mutation R486W and WT BMPR1B. Overexpression of the mutant receptors in chicken micromass cultures resulted in a strong inhibition of chondrogenesis with the R486Q mutant, showing a stronger effect than the R486W mutant. To investigate the consequences of the BMPR1B mutations on the intracellular signal transduction, we used stably transfected C2C12 cells and measured the activity of SMAD-dependent and SMAD-independent pathways. SMAD activation after stimulation with GDF5 was suppressed in both mutants. Alkaline phosphatase induction showed an almost complete loss of activation by both mutants. Our data extend the previously known mutational and phenotypic spectrum associated with mutations in BMPR1B. Disturbances of NOG-GDF5-BMPR1B signaling cascade can result in similar clinical manifestations depending on the quantitative effect and mode of action of the specific mutations within the same functional pathway

    Validating CFD predictions of flow over an escarpment using ground-based and airborne measurement devices

    Get PDF
    Micrometeorological observations from a tower, an eddy-covariance (EC) station and an unmanned aircraft system (UAS) at the WINSENT test-site are used to validate a computational fluid dynamics (CFD) model, driven by a mesoscale model. The observation site is characterised by a forested escarpment in a complex terrain. A two-day measurement campaign with a flow almost perpendicular to the escarpment is analysed. The first day is dominated by high wind speeds, while, on the second one, calm wind conditions are present. Despite some minor differences, the flow structure, analysed in terms of horizontal wind speeds, wind direction and inclination angles shows similarities for both days. A real-time strategy is used for the CFD validation with the UAS measurement, where the model follows spatially and temporally the aircraft. This strategy has proved to be successful. Stability indices such as the potential temperature and the bulk Richardson number are calculated to diagnose atmospheric boundary layer (ABL) characteristics up to the highest flight level. The calculated bulk Richardson values indicate a dynamically unstable region behind the escarpment and near the ground for both days. At higher altitudes, the ABL is returning to a near neutral state. The same characteristics are found in the model but only for the first day. The second day, where shear instabilities are more dominant, is not well simulated. UAS proves its great value for sensing the flow over complex terrains at high altitudes and we demonstrate the usefulness of UAS for validating and improving models

    Mortality in an ICU of a tertiary hospital

    Get PDF

    SAPS 3—From evaluation of the patient to evaluation of the intensive care unit. Part 1: Objectives, methods and cohort description

    Get PDF
    OBJECTIVE: Risk adjustment systems now in use were developed more than a decade ago and lack prognostic performance. Objective of the SAPS 3 study was to collect data about risk factors and outcomes in a heterogeneous cohort of intensive care unit (ICU) patients, in order to develop a new, improved model for risk adjustment. DESIGN: Prospective multicentre, multinational cohort study. PATIENTS AND SETTING: A total of 19,577 patients consecutively admitted to 307 ICUs from 14 October to 15 December 2002. MEASUREMENTS AND RESULTS: Data were collected at ICU admission, on days 1, 2 and 3, and the last day of the ICU stay. Data included sociodemographics, chronic conditions, diagnostic information, physiological derangement at ICU admission, number and severity of organ dysfunctions, length of ICU and hospital stay, and vital status at ICU and hospital discharge. Data reliability was tested with use of kappa statistics and intraclass-correlation coefficients, which were >0.85 for the majority of variables. Completeness of the data was also satisfactory, with 1 [0–3] SAPS II parameter missing per patient. Prognostic performance of the SAPS II was poor, with significant differences between observed and expected mortality rates for the overall cohort and four (of seven) defined regions, and poor calibration for most tested subgroups. CONCLUSIONS: The SAPS 3 study was able to provide a high-quality multinational database, reflecting heterogeneity of current ICU case-mix and typology. The poor performance of SAPS II in this cohort underscores the need for development of a new risk adjustment system for critically ill patients. ELECTRONIC SUPPLEMENTARY MATERIAL: Electronic supplementary material is included in the online fulltext version of this article and accessible for authorised users: http://dx.doi.org/10.1007/s00134-005-2762-

    Disease severity adversely affects delivery of dialysis in acute renal failure

    Get PDF
    Background/Aims: Methods of intermittent hemodialysis (IHD) dose quantification in acute renal failure (ARF) are not well defined. This observational study was designed to evaluate the impact of disease activity on delivered single pool Kt/V-urea in ARF patients. Methods: 100 patients with severe ARF (acute intrinsic renal disease in 18 patients, nephrotoxic acute tubular necrosis in 38 patients, and septic ARF in 44 patients) were analyzed during four consecutive sessions of IHD, performed for 3.5-5 h every other day or daily. Target IHD dose was a single pool Kt/V-urea of 1.2 or more per dialysis session for all patients. Prescribed Kt/V-urea was calculated from desired dialyzer clearance (K), desired treatment time (t) and anthropometric estimates for urea distribution volume (V). The desired clearance (K) was estimated from prescribed blood flow rate and manufacturer's charts of in vivo data obtained in maintenance dialysis patients. Delivered single pool Kt/V-urea was calculated using the Daugirdas equation. Results: None of the patients had prescription failure of the target dose. The delivered IHD doses were substantially lower than the prescribed Kt/V values, particularly in ARF patients with sepsis/septic shock. Stratification according to disease severity revealed that all patients with isolated ARF, but none with 3 or more organ failures and none who needed vasopressive support received the target dose. Conclusion: Prescription of target IHD dose by single pool Kt/V-urea resulted in suboptimal dialysis dose delivery in critically ill patients. Numerous patient-related and treatment-immanent factors acting in concert reduced the delivered dose. Copyright (C) 2007 S. Karger AG, Basel

    Applying consumer responsibility principle in evaluating environmental load of carbon emissions

    Get PDF
    There is a need for a proper indicator in order to assess the environmental impact of international trade, therefore using the carbon footprint as an indicator can be relevant and useful. The aim of this study is to show from a methodological perspective how the carbon footprint, combined with input- output models can be used for analysing the impacts of international trade on the sustainable use of national resources in a country. The use of the input-output approach has the essential advantage of being able to track the transformation of goods through the economy. The study examines the environmental impact of consumption related to international trade, using the consumer responsibility principle. In this study the use of the carbon footprint and input-output methodology is shown on the example of the Hungarian consumption and the impact of international trade. Moving from a production- based approach in climate policy to a consumption-perspective principle and allocation, would also help to increase the efficiency of emission reduction targets and the evaluation of the ecological impacts of international trade
    • …
    corecore