521 research outputs found

    Data associated with “How Big is Big Enough? Surprising Responses of a Semi-arid Grassland to Increasing Deluge Size”

    Get PDF
    Data used in manuscript “How Big is Big Enough? Surprising Responses of a Semi-arid Grassland to Increasing Deluge Size.” This study quantifies the impact of deluge size on various ecosystem processes in the shortgrass steppe of Eastern Colorado.Climate change has intensified the hydrologic cycle globally, increasing the magnitude and frequency of large precipitation events, or deluges. Dryland ecosystems are expected to be particularly responsive to increases in deluge size, as their ecological processes are largely dependent on distinct soil moisture pulses. To better understand how increasing deluge size will affect ecosystem function, we conducted a field experiment in a native semi-arid shortgrass steppe (Colorado, USA). We quantified ecological responses to a range of deluge sizes, from moderate to extreme, with the goal of identifying response patterns and thresholds beyond which ecological processes would not increase further (saturate). Using a replicated regression approach, we imposed single deluges that ranged in size from 20 to 120 mm (82.3rd to > 99.9th percentile of historical event size) on undisturbed grassland plots. We quantified pre- and post-deluge responses in soil moisture, soil respiration, and canopy greenness, as well as leaf water potential, growth, and flowering of the dominant grass species (Bouteloua gracilis). We also measured end of season above- and below-ground net primary production (ANPP, BNPP). As expected, this water-limited ecosystem responded strongly to the applied deluges, but surprisingly, most variables increased linearly with deluge size. We found little evidence for response thresholds within the range of deluge sizes imposed, at least during a dry year. Instead, response patterns reflected the linear increase in the duration of elevated soil moisture (2-22 days) with increasing event size. Flowering of B. gracilis and soil respiration responded particularly strongly to deluge size (14- and 4-fold increases, respectively), as did ANPP and BNPP (~60% increase for both). Overall, our results suggest that this semi-arid grassland will respond positively and linearly to predicted increases in deluge size, and that event sizes will need to exceed historical magnitudes before responses saturate.Stavros Family Fund from the CSU Department of BiologyNational Science Foundation Graduate Research Fellowship (NSF GRFP)USDA National Institute of Food and Agriculture Award (NIFA #2018-67019-27849

    Spectral action for a one-parameter family of Dirac-type operators on SU(2) and its inflation model

    Get PDF
    We analyze the Dirac Laplacian of a one-parameter family of Dirac operators on a compact Lie group, which includes the Levi-Civita, cubic, and trivial Dirac operators. More specifically, we describe the Dirac Laplacian action on any Clifford module in terms of the action of the Lie algebra's Casimir element on finite-dimensional irreducible representations of the Lie group. Using this description of the Dirac Laplacian, we explicitly compute spectrum for the one-parameter family of Dirac Laplacians on SU(2), and then using the Poisson summation formula, the full asymptotic expansion of the spectral action. The technique used to explicitly compute the spectrum applies more generally to any Lie group where one can concretely describe the weights and corresponding irreducible representations, as well as decompose tensor products of an irreducible representation with the Weyl representation into irreducible components. Using the full asymptotic expansion of the spectral action, we generate the inflation potential and slow-roll parameters for the corresponding pure gravity inflationary theory.Comment: 9 page

    Heat Control via Torque Control in Friction Stir Welding

    Get PDF
    In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure)

    Dementia care mapping in long-term care settings: a systematic review of the evidence

    Get PDF
    YesThis systematic review identifies and reports the extent and nature of evidence to support the use of Dementia Care Mapping as an intervention in care settings. The review was limited to studies that used Dementia Care Mapping as an intervention and included outcomes involving either care workers and/or people living with dementia. Searches were conducted in PubMed, Web of Knowledge, CINAHL, PsychINFO, EBSCO and Scopus and manually from identified articles reference lists. Studies published up to January 2017 were included. Initial screening of identified papers was based on abstracts read by one author; full-text papers were further evaluated by a second author. The quality of the identified papers was assessed independently by two authors using the Cochrane Risk of Bias Tool. A narrative synthesis of quantitative findings was conducted. We identified 6 papers fulfilling predefined criteria. Studies consist of recent, large scale, good quality trials that had some positive impacts upon care workers’ stress and burnout and benefit people with dementia in terms of agitated behaviours, neuropsychiatric symptoms, falls and quality of life. Available research provides preliminary evidence that Dementia Care Mapping may benefit care workers and people living with dementia in care settings. Future research should build on the successful studies to date and use other outcomes to better understand the benefits of this intervention

    Decadal-scale shifts in soil hydraulic properties as induced by altered precipitation

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.Soil hydraulic properties influence the partitioning of rainfall into infiltration versus runoff, determine plant-available water, and constrain evapotranspiration. Although rapid changes in soil hydraulic properties from direct human disturbance are well documented, climate change may also induce such shifts on decadal time scales. Using soils from a 25-year precipitation manipulation experiment, we found that a 35% increase in water inputs substantially reduced infiltration rates and modestly increased water retention. We posit that these shifts were catalyzed by greater pore blockage by plant roots and reduced shrink-swell cycles. Given that precipitation regimes are expected to change at accelerating rates globally, shifts in soil structure could occur over broad regions more rapidly than expected and thus alter water storage and movement in numerous terrestrial ecosystems

    Coordination of hydraulic and morphological traits across dominant grasses in eastern Australia

    Get PDF
    Leaf hydraulic traits characterize plant drought tolerance and responses to climate change. Yet, plant hydraulics are biased towards northern hemisphere woody species. We collected rhizomes of several perennial grass species along a precipitation gradient in eastern Australia and grew them in an experimental pot study to investigate potential trade-offs between drought tolerance and plant morphology. We measured the following leaf hydraulic traits: the leaf water potential (Ψleaf) at 50% and 88% loss of leaf hydraulic conductance (P50Kleaf and P88Kleaf), the Ψleaf at 50% loss of stomatal conductance (P50gs), leaf turgor loss point (TLP), leaf dry matter content (LDMC), leaf modulus of elasticity (ε), and the slope of the relationship between predawn and midday Ψleaf. We also measured basal area, tiller density, seed head density, root collar diameter, plant height, and aboveground biomass of each individual. As expected, grass species varied widely in leaf-level drought tolerance, with loss of 88% hydraulic conductance occurring at a Ψleaf ranging from −1.52 to −4.01 MPa. However, all but one species lost leaf turgor, and most reached P50gs before this critical threshold. Taller more productive grass species tended to have drought vulnerable leaves characterized by low LDMC and less negative P88Kleaf. Species with greater tiller production experienced stomatal closure and lost turgor at more negative Ψleaf. Although our sample size was limited, we found no relationships between these species' traits and their climate of origin. Overall, we identified important hydraulic and morphological trade-offs in Australian grasses that were surprisingly similar to those observed for woody plants: (1) xylem of taller species was less drought tolerant and (2) turgor loss occurs and stomatal closure begins before significant loss of Kleaf. These data build upon a small yet growing field of grass hydraulics and may be informative of species responses to further drought intensification in Australia. Read the free Plain Language Summary for this article on the Journal blog

    Rangeland Responses to Predicted Increases in Drought Extremity

    Get PDF
    Rangeland managers actively focus on the potential to induce a shift in a site to an alternative state, but predicted changes in climate, particularly the likelihood of more extreme drought, necessitate reevaluating risks for alternative states. • Rangelands will differ in their susceptibility to undergo state changes due to climate change in general and for droughts of the future, in particular, which may be hotter. • Trees, shrubs, and grasses are expected to differ in their sensitivity to drought, with trees likely being most sensitive; this affects the likelihood for state changes in grasslands, shrublands, woodlands, and savannas. • Considering these differences can help rangeland managers deal with the challenges of increasing drought that is forecast to occur with climate change

    Extending the Osmometer Method for Assessing Drought Tolerance in Herbaceous Species

    Get PDF
    Community-scale surveys of plant drought tolerance are essential for understanding semi-arid ecosystems and community responses to climate change. Thus, there is a need for an accurate and rapid methodology for assessing drought tolerance strategies across plant functional types. The osmometer method for predicting leaf osmotic potential at full turgor ((o)), a key metric of leaf-level drought tolerance, has resulted in a 50-fold increase in the measurement speed of this trait; however, the applicability of this method has only been tested in woody species and crops. Here, we assess the osmometer method for use in herbaceous grassland species and test whether (o) is an appropriate plant trait for understanding drought strategies of herbaceous species as well as species distributions along climate gradients. Our model for predicting leaf turgor loss point ((TLP)) from (o) ((TLP)=0.80(o)-0.845) is nearly identical to the model previously presented for woody species. Additionally, (o) was highly correlated with (TLP) for graminoid species ((tlp)=0.944(o)-0.611; r(2)=0.96), a plant functional group previously flagged for having the potential to cause erroneous measurements when using an osmometer. We report that (o), measured with an osmometer, is well correlated with other traits linked to drought tolerance (namely, leaf dry matter content and leaf vulnerability to hydraulic failure) as well as climate extremes linked to water availability. The validation of the osmometer method in an herb-dominated ecosystem paves the way for rapid community-scale surveys of drought tolerance across plant functional groups, which could improve trait-based predictions of ecosystem responses to climate change

    Moisture availability mediates the relationship between terrestrial gross primary production and solar‐induced chlorophyll fluorescence: Insights from global‐scale variations

    Get PDF
    Effective use of solar‐induced chlorophyll fluorescence (SIF) to estimate and monitor gross primary production (GPP) in terrestrial ecosystems requires a comprehensive understanding and quantification of the relationship between SIF and GPP. To date, this understanding is incomplete and somewhat controversial in the literature. Here we derived the GPP/SIF ratio from multiple data sources as a diagnostic metric to explore its global‐scale patterns of spatial variation and potential climatic dependence. We found that the growing season GPP/SIF ratio varied substantially across global land surfaces, with the highest ratios consistently found in boreal regions. Spatial variation in GPP/SIF was strongly modulated by climate variables. The most striking pattern was a consistent decrease in GPP/SIF from cold‐and‐wet climates to hot‐and‐dry climates. We propose that the reduction in GPP/SIF with decreasing moisture availability may be related to stomatal responses to aridity. Furthermore, we show that GPP/SIF can be empirically modeled from climate variables using a machine learning (random forest) framework, which can improve the modeling of ecosystem production and quantify its uncertainty in global terrestrial biosphere models. Our results point to the need for targeted field and experimental studies to better understand the patterns observed and to improve the modeling of the relationship between SIF and GPP over broad scales
    • …
    corecore