64 research outputs found

    Nest Defense and Conspecific Enemy Recognition in the Desert Ant Cataglyphis fortis

    Get PDF
    This study focuses on different factors affecting the level of aggression in the desert ant Cataglyphis fortis. We found that the readiness to fight against conspecific ants was high in ants captured close to the nest entrance (0- and 1-m distances). At a 5-m distance from the nest entrance the level of aggression was significantly lower. As the mean foraging range in desert ants by far exceeds this distance, the present account clearly shows that in C. fortis aggressive behavior is displayed in the context of nest, rather than food-territory defense. In addition, ants were more aggressive against members of a colony with which they had recently exchanged aggressive encounters than against members of a yet unknown colony. This finding is discussed in terms of a learned, enemy-specific label-template recognition proces

    Desert ants: is active locomotion a prerequisite for path integration?

    Get PDF
    Desert ants Cataglyphis fortis have been shown to be able to employ two mechanisms of distance estimation: exploiting both optic flow and proprioceptive information. This study aims at understanding possible interactions between the two possibly redundant mechanisms of distance estimation. We ask whether in Cataglyphis the obviously minor contribution of optic flow would increase or even take over completely if the ants were deprived of reliable proprioceptive information. In various experimental paradigms ants were subjected to passive horizontal displacements during which they perceived optic flow, but were prohibited from active locomotion. The results show that in desert ants active locomotion is essential for providing the ants' odometer and hence its path integrator with the necessary informatio

    Smells like home: Desert ants, Cataglyphis fortis, use olfactory landmarks to pinpoint the nest

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Cataglyphis fortis </it>ants forage individually for dead arthropods in the inhospitable salt-pans of Tunisia. Locating the inconspicuous nest after a foraging run of more than 100 meters demands a remarkable orientation capability. As a result of high temperatures and the unpredictable distribution of food, <it>Cataglyphis </it>ants do not lay pheromone trails. Instead, path integration is the fundamental system of long-distance navigation. This system constantly informs a foraging ant about its position relative to the nest. In addition, the ants rely on visual landmarks as geocentric navigational cues to finally pinpoint the nest entrance.</p> <p>Results</p> <p>Apart from the visual cues within the ants' habitat, we found potential olfactory landmark information with different odour blends coupled to various ground structures. Here we show that <it>Cataglyphis </it>ants can use olfactory information in order to locate their nest entrance. Ants were trained to associate their nest entrance with a single odour. In a test situation, they focused their nest search on the position of the training odour but not on the positions of non-training odours. When trained to a single odour, the ants were able to recognise this odour within a mixture of four odours.</p> <p>Conclusion</p> <p>The uniform salt-pans become less homogenous if one takes olfactory landmarks into account. As <it>Cataglyphis </it>ants associate environmental odours with the nest entrance they can be said to use olfactory landmarks in the vicinity of the nest for homing.</p

    Flexible weighing of olfactory and vector information in the desert ant Cataglyphis fortis

    Get PDF
    Desert ants, Cataglyphis fortis, are equipped with remarkable skills that enable them to navigate efficiently. When travelling between the nest and a previously visited feeding site, they perform path integration (PI), but pinpoint the nest or feeder by following odour plumes. Homing ants respond to nest plumes only when the path integrator indicates that they are near home. This is crucial, as homing ants often pass through plumes emanating from foreign nests and do not discriminate between the plume of their own and that of a foreign nest, but should absolutely avoid entering a wrong nest. Their behaviour towards food odours differs greatly. Here, we show that in ants on the way to food, olfactory information outweighs PI information. Although PI guides ants back to a learned feeder, the ants respond to food odours independently of whether or not they are close to the learned feeding site. This ability is beneficial, as new food sources—unlike foreign nests—never pose a threat but enable ants to shorten distances travelled while foraging. While it has been shown that navigating C. fortis ants rely strongly on PI, we report here that the ants retained the necessary flexibility in the use of PI

    Spatial Representation of Odorant Valence in an Insect Brain

    Get PDF
    SummaryBrains have to decide whether and how to respond to detected stimuli based on complex sensory input. The vinegar fly Drosophila melanogaster evaluates food sources based on olfactory cues. Here, we performed a behavioral screen using the vinegar fly and established the innate valence of 110 odorants. Our analysis of neuronal activation patterns evoked by attractive and aversive odorants suggests that even though the identity of odorants is coded by the set of activated receptors, the main representation of odorant valence is formed at the output level of the antennal lobe. The topographic clustering within the antennal lobe of valence-specific output neurons resembles a corresponding domain in the olfactory bulb of mice. The basal anatomical structure of the olfactory circuit between insects and vertebrates is known to be similar; our study suggests that the representation of odorant valence is as well

    Learning-based oviposition constancy in insects

    Get PDF
    The search for resources occupies a major part of the time and energy budget of many insects. In this context, many insects display constancy behavior, in which they learn to return to the same, predictably rewarding resource repeatedly. Flower constancy is one such behavior, where nectar-feeding insects restrict foraging visits to a few plant species, sometimes overlooking potentially better-rewarding plants. This phenomenon is well documented in multiple species and is believed to be an optimal strategy to maximize benefits, while minimizing energy and time expenditure. Oviposition constancy is a similar behavior, where insects, dependent on previous experience, restrict their visits to a few types of potential oviposition sites. In contrast to flower constancy, the prevalence of oviposition constancy and the rationale behind this behavior are relatively unknown. An improved understanding of oviposition constancy can act as a lens into the evolutionary history of local insect adaptations, it can help gauge the impact of climate change on insect plant interactions, and it can aid the design of crop-pest management strategies. In this review, we discuss the potential benefits of oviposition constancy in insects and the extent of plasticity occurring in host-plant choice for oviposition

    Evaluation of the DREAM Technique for a High-Throughput Deorphanization of Chemosensory Receptors in Drosophila

    Get PDF
    In the vinegar fly Drosophila melanogaster, the majority of olfactory receptors mediating the detection of volatile chemicals found in their natural habitat have been functionally characterized (deorphanized) in vivo. In this process, receptors have been assigned ligands leading to either excitation or inhibition in the olfactory sensory neuron where they are expressed. In other, non-drosophilid insect species, scientists have not yet been able to compile datasets about ligand–receptor interactions anywhere near as extensive as in the model organism D. melanogaster, as genetic tools necessary for receptor deorphanization are still missing. Recently, it was discovered that exposure to artificially high concentrations of odorants leads to reliable alterations in mRNA levels of interacting odorant receptors in mammals. Analyzing receptor expression after odorant exposure can, therefore, help to identify ligand–receptor interactions in vivo without the need for other genetic tools. Transfer of the same methodology from mice to a small number of receptors in D. melanogaster resulted in a similar trend, indicating that odorant exposure induced alterations in mRNA levels are generally applicable for deorphanization of interacting chemosensory receptors. Here, we evaluated the potential of the DREAM (Deorphanization of receptors based on expression alterations in mRNA levels) technique for high-throughput deorphanization of chemosensory receptors in insect species using D. melanogaster as a model. We confirmed that in some cases the exposure of a chemosensory receptor to high concentration of its best ligand leads to measureable alterations in mRNA levels. However, unlike in mammals, we found several cases where either confirmed ligands did not induce alterations in mRNA levels of the corresponding chemosensory receptors, or where gene transcript-levels were altered even though there is no evidence for a ligand–receptor interaction. Hence, there are severe limitations to the suitability of the DREAM technique for deorphanization as a general tool to characterize olfactory receptors in insects

    Desert Ants Learn Vibration and Magnetic Landmarks

    Get PDF
    The desert ants Cataglyphis navigate not only by path integration but also by using visual and olfactory landmarks to pinpoint the nest entrance. Here we show that Cataglyphis noda can additionally use magnetic and vibrational landmarks as nest-defining cues. The magnetic field may typically provide directional rather than positional information, and vibrational signals so far have been shown to be involved in social behavior. Thus it remains questionable if magnetic and vibration landmarks are usually provided by the ants' habitat as nest-defining cues. However, our results point to the flexibility of the ants' navigational system, which even makes use of cues that are probably most often sensed in a different context

    Intraspecific Combinations of Flower and Leaf Volatiles Act Together in Attracting Hawkmoth Pollinators

    Get PDF
    Insects pinpoint mates, food and oviposition sites by olfactory cues. Recognizing and localizing a suitable target by olfaction is demanding. Odor sources emit characteristic blends of compounds that have to be identified against an environmentally derived olfactory background. This background, however, does not necessarily disturb the localization of a source. Rather, the contrary. Sex pheromones become more attractive to male moths when being presented against a relevant plant background. Here we asked whether such olfactory coaction also characterizes foraging cues. The tobacco hornworm Manduca sexta feeds on nectar from wild tobacco Nicotiana attenuata and sacred datura Datura wrightii flowers. We tested how leaf-derived volatile blends as a background affect the moths' approach to flower blends. We found coaction when a flower blend was presented against a conspecific leaf volatile background but not when the blend was presented against volatiles emitted by the other host plant or by a non-host plant. Hence, our results reveal a species-specific coaction between flower blend and leaf volatile background. The ability to integrate information from different odor sources on one plant might provide the moth with a fine-grained analysis of food site quality

    Towards plant-odor-related olfactory neuroethology in Drosophila

    Get PDF
    Drosophila melanogaster is today one of the three foremost models in olfactory research, paralleled only by the mouse and the nematode. In the last years, immense progress has been achieved by combining neurogenetic tools with neurophysiology, anatomy, chemistry, and behavioral assays. One of the most important tasks for a fruit fly is to find a substrate for eating and laying eggs. To perform this task the fly is dependent on olfactory cues emitted by suitable substrates as e.g. decaying fruit. In addition, in this area, considerable progress has been made during the last years, and more and more natural and behaviorally active ligands have been identified. The future challenge is to tie the progress in different fields together to give us a better understanding of how a fly really behaves. Not in a test tube, but in nature. Here, we review our present state of knowledge regarding Drosophila plant-odor-related olfactory neuroethology to provide a basis for new progress
    corecore