93 research outputs found

    Sensory imagery in craving: From cognitive psychology to new treatments for addiction

    Get PDF
    Sensory imagery is a powerful tool for inducing craving because it is a key component of the cognitive system that underpins human motivation. The role of sensory imagery in motivation is explained by Elaborated Intrusion (EI) theory. Imagery plays an important role in motivation because it conveys the emotional qualities of the desired event, mimicking anticipated pleasure or relief, and continual elaboration of the imagery ensures that the target stays in mind. We argue that craving is a conscious state, intervening between unconscious triggers and consumption, and summarise evidence that interfering with sensory imagery can weaken cravings. We argue that treatments for addiction can be enhanced by the application of EI theory to maintain motivation, and assist in the management of craving in high-risk situations

    TMEFF2 shedding is regulated by oxidative stress and mediated by ADAMs and transmembrane serine proteases implicated in prostate cancer

    Get PDF
    TMEFF2 is a type I transmembrane protein with two follistatin (FS) and one EGF-like domain over-expressed in prostate cancer; however its biological role in prostate cancer development and progression remains unclear, which may, at least in part, be explained by its proteolytic processing. The extracellular part of TMEFF2 (TMEFF2-ECD) is cleaved by ADAM17 and the membrane-retained fragment is further processed by the gamma-secretase complex. TMEFF2 shedding is increased with cell crowding, a condition associated with the tumour microenvironment, which was mediated by oxidative stress signalling, requiring jun-kinase (JNK) activation. Moreover, we have identified that TMEFF2 is also a novel substrate for other proteases implicated in prostate cancer, including two ADAMs (ADAM9 and ADAM12) and the type II transmembrane serine proteinases (TTSPs) matriptase-1 and hepsin. Whereas cleavage by ADAM9 and ADAM12 generates previously identified TMEFF2-ECD, proteolytic processing by matriptase-1 and hepsin produced TMEFF2 fragments, composed of TMEFF2-ECD or FS and/or EGF-like domains as well as novel membrane retained fragments. Differential TMEFF2 processing from a single transmembrane protein may be a general mechanism to modulate transmembrane protein levels and domains, dependent on the repertoire of ADAMs or TTSPs expressed by the target cell

    ADAM17-dependent proteolysis of L-selectin promotes early clonal expansion of cytotoxic T cells

    Get PDF
    L-selectin on T-cells is best known as an adhesion molecule that supports recruitment of blood-borne naïve and central memory cells into lymph nodes. Proteolytic shedding of the ectodomain is thought to redirect activated T-cells from lymph nodes to sites of infection. However, we have shown that activated T-cells re-express L-selectin before lymph node egress and use L-selectin to locate to virus-infected tissues. Therefore, we considered other roles for L-selectin proteolysis during T cell activation. In this study, we used T cells expressing cleavable or non-cleavable L-selectin and determined the impact of L-selectin proteolysis on T cell activation in virus-infected mice. We confirm an essential and non-redundant role for ADAM17 in TCR-induced proteolysis of L-selectin in mouse and human T cells and show that L-selectin cleavage does not regulate T cell activation measured by CD69 or TCR internalisation. Following virus infection of mice, L-selectin proteolysis promoted early clonal expansion of cytotoxic T cells resulting in an 8-fold increase over T cells unable to cleave L-selectin. T cells unable to cleave L-selectin showed delayed proliferation in vitro which correlated with lower CD25 expression. Based on these results, we propose that ADAM17-dependent proteolysis of L-selectin should be considered a regulator of T-cell activation at sites of immune activity

    The associations of earlier trauma exposures and history of mental disorders with PTSD after subsequent traumas

    Get PDF
    Although earlier trauma exposure is known to predict posttraumatic stress disorder (PTSD) after subsequent traumas, it is unclear whether this association is limited to cases where the earlier trauma led to PTSD. Resolution of this uncertainty has important implications for research on pretrauma vulnerability to PTSD. We examined this issue in the World Health Organization (WHO) World Mental Health (WMH) Surveys with 34 676 respondents who reported lifetime trauma exposure. One lifetime trauma was selected randomly for each respondent. DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, 4th Edition) PTSD due to that trauma was assessed. We reported in a previous paper that four earlier traumas involving interpersonal violence significantly predicted PTSD after subsequent random traumas (odds ratio (OR)=1.3-2.5). We also assessed 14 lifetime DSM-IV mood, anxiety, disruptive behavior and substance disorders before random traumas. We show in the current report that only prior anxiety disorders significantly predicted PTSD in a multivariate model (OR=1.5-4.3) and that these disorders interacted significantly with three of the earlier traumas (witnessing atrocities, physical violence victimization and rape). History of witnessing atrocities significantly predicted PTSD after subsequent random traumas only among respondents with prior PTSD (OR=5.6). Histories of physical violence victimization (OR=1.5) and rape after age 17 years (OR=17.6) significantly predicted only among respondents with no history of prior anxiety disorders. Although only preliminary due to reliance on retrospective reports, these results suggest that history of anxiety disorders and history of a limited number of earlier traumas might usefully be targeted in future prospective studies as distinct foci of research on individual differences in vulnerability to PTSD after subsequent traumas.The ESEMeD project is funded by the European Commission (Contracts QLG5-1999-01042; SANCO 2004123, and EAHC 20081308), (the Piedmont Region (Italy)), Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Spain (FIS 00/0028), Ministerio de Ciencia y Tecnología, Spain (SAF 2000-158-CE), Departament de Salut, Generalitat de Catalunya, Spain, Instituto de Salud Carlos III (CIBER CB06/02/0046, RETICS RD06/0011 REM-TAP), and other local agencies and by an unrestricted educational grant from GlaxoSmithKline

    Keratinocyte Growth Factor Induces Gene Expression Signature Associated with Suppression of Malignant Phenotype of Cutaneous Squamous Carcinoma Cells

    Get PDF
    Keratinocyte growth factor (KGF, fibroblast growth factor-7) is a fibroblast-derived mitogen, which stimulates proliferation of epithelial cells. The expression of KGF by dermal fibroblasts is induced following injury and it promotes wound repair. However, the role of KGF in cutaneous carcinogenesis and cancer progression is not known. We have examined the role of KGF in progression of squamous cell carcinoma (SCC) of the skin. The expression of KGF receptor (KGFR) mRNA was lower in cutaneous SCCs (n = 6) than in normal skin samples (n = 6). Expression of KGFR mRNA was detected in 6 out of 8 cutaneous SCC cell lines and the levels were downregulated by 24-h treatment with KGF. KGF did not stimulate SCC cell proliferation, but it reduced invasion of SCC cells through collagen. Gene expression profiling of three cutaneous SCC cell lines treated with KGF for 24 h revealed a specific gene expression signature characterized by upregulation of a set of genes specifically downregulated in SCC cells compared to normal epidermal keratinocytes, including genes with tumor suppressing properties (SPRY4, DUSP4, DUSP6, LRIG1, PHLDA1). KGF also induced downregulation of a set of genes specifically upregulated in SCC cells compared to normal keratinocytes, including genes associated with tumor progression (MMP13, MATN2, CXCL10, and IGFBP3). Downregulation of MMP-13 and KGFR expression in SCC cells and HaCaT cells was mediated via ERK1/2. Activation of ERK1/2 in HaCaT cells and tumorigenic Ha-ras-transformed HaCaT cells resulted in downregulation of MMP-13 and KGFR expression. These results provide evidence, that KGF does not promote progression of cutaneous SCC, but rather suppresses the malignant phenotype of cutaneous SCC cells by regulating the expression of several genes differentially expressed in SCC cells, as compared to normal keratinocytes

    PPARgamma inhibits hepatocellular carcinoma metastases in vitro and in mice

    Get PDF
    Background: We have previously demonstrated that peroxisome proliferator-activated receptor (PPARγ) activation inhibits hepatocarcinogenesis. We aim to investigate the effect of PPARγ on hepatocellular carcinoma (HCC) metastatic potential and explore its underlying mechanisms. Methods: Human HCC cells (MHCC97L, BEL-7404) were infected with adenovirus-expressing PPARγ (Ad-PPARγ) or Ad-lacZ and treated with or without PPARγ agonist (rosiglitazone). The effects of PPARγ on cell migration and invasive activity were determined by wound healing assay and Matrigel invasive model in vitro, and in an orthotopic liver tumour metastatic model in mice.Results:Pronounced expression of PPARγ was demonstrated in HCC cells (MHCC97L, BEL-7404) treated with Ad-PPARγ, rosiglitazone or Ad-PPARγ plus rosiglitazone, compared with control (Ad-LacZ). Such induction markedly suppressed HCC cell migration. Moreover, the invasiveness of MHCC97L and BEL-7404 cells infected with Ad-PPARγ, or treated with rosiglitazone was significantly diminished up to 60%. Combination of Ad-PPARγ and rosiglitazone showed an additive effect. Activation of PPARγ by rosiglitazone significantly reduced the incidence and severity of lung metastasis in an orthotopic HCC mouse model. Key mechanisms underlying the effect of PPARγ in HCC include upregulation of cell adhesion genes, E-cadherin and SYK (spleen tyrosine kinase), extracellular matrix regulator tissue inhibitors of metalloproteinase (TIMP) 3, tumour suppressor gene retinoblastoma 1, and downregulation of pro-metastatic genes MMP9 (matrix metallopeptidase 9), MMP13, HPSE (heparanase), and Hepatocyte growth factor (HGF). Direct transcriptional regulation of TIMP3, MMP9, MMP13, and HPSE by PPARγ was shown by ChIP-PCR. Conclusion: Peroxisome proliferator-activated receptor-gamma exerts an inhibitory effect on the invasive and metastatic potential of HCC in vitro and in vivo, and is thus, a target for the prevention and treatment of HCC metastases. © 2012 Cancer Research UK All rights reserved.published_or_final_versio

    Role of host genetics in fibrosis

    Get PDF
    Fibrosis can occur in tissues in response to a variety of stimuli. Following tissue injury, cells undergo transformation or activation from a quiescent to an activated state resulting in tissue remodelling. The fibrogenic process creates a tissue environment that allows inflammatory and matrix-producing cells to invade and proliferate. While this process is important for normal wound healing, chronicity can lead to impaired tissue structure and function
    corecore