194 research outputs found
Thermal Decomposition Pathways of ZnxFe3- xO4Nanoparticles in Different Atmospheres
This article shows how initial composition and thermal treatment of nonstoichiometric zinc ferrite nanoparticles (nZFN) can be chosen to adjust the structure and cation distribution and enhance magnetism in the resulting nanoscale material. It also provides insight into new prospects regarding the production and design of nanoscale materials. Investigations were conducted before and after heating of nZFN in an inert atmosphere and a vacuum up to temperature of 1170 °C. Annealing leads to partial reduction of Fe ions, enhanced magnetism, and an increase in the size of the particles independent of the atmosphere. Use of the inert atmosphere delivers a solid solution of magnetite and zinc ferrite with a reduced Zn content in the structure as a result of sublimation of newly formed ZnO and reduction of Fe, and it favors crystallization. A preference for normal-spinel phase and enhancement of magnetic saturation from 20 Am2/kg up to 101 Am2/kg was observed. Vacuum annealing with high probability produces ZnO, Fe3O4, and Fe2O3 multiphase system with signs of amorphization, mainly on the surface. A large fraction of Fe ions is reduced and the volume ratio of Fe3O4 to Fe2O3 increases with heating time. The final solid product from a complete decomposition of ZFN is magnetite
Hoxa cluster genes determine the proliferative activity of adult mouse hematopoietic stem and progenitor cells
Determination of defined roles for endogenous homeobox (Hox) genes in adult hematopoietic stem and progenitor cell (HSPC) activity has been hampered by a combination of embryonic defects and functional redundancy. Here we show that conditional homozygous deletion of the Hoxa cluster (Hoxa−/−) results in a marked reduction of adult HSPC activity, both in vitro and in vivo. Specifically, proliferation of Hoxa−/− HSPCs is reduced compared with wild-type (WT) cells in vitro and they are less competitive in vivo. Notably, the loss of Hoxa genes had little impact on HSPC differentiation. Comparative RNA sequencing analyses of Hoxa−/− and WT hematopoietic stem cells (CD150+/CD48−/Lineage−/c-kit+/Sca-1+) identified a large number of differentially expressed genes, three of which (Nr4a3, Col1a1, and Hnf4a) showed >10-fold reduced levels. Engineered overexpression of Hoxa9 in Hoxa−/− HSPCs resulted in partial phenotypic rescue in vivo with associated recovery in expression of a large proportion of deregulated genes. Together, these results provide definitive evidence linking Hoxa gene expression to proliferation of adult HSPCs
Comparative analyses of vertebrate posterior HoxD clusters reveal atypical cluster architecture in the caecilian Typhlonectes natans
<p>Abstract</p> <p>Background</p> <p>The posterior genes of the <it>HoxD </it>cluster play a crucial role in the patterning of the tetrapod limb. This region is under the control of a global, long-range enhancer that is present in all vertebrates. Variation in limb types, as is the case in amphibians, can probably not only be attributed to variation in <it>Hox </it>genes, but is likely to be the product of differences in gene regulation. With a collection of vertebrate genome sequences available today, we used a comparative genomics approach to study the posterior <it>HoxD </it>cluster of amphibians. A frog and a caecilian were included in the study to compare coding sequences as well as to determine the gain and loss of putative regulatory sequences.</p> <p>Results</p> <p>We sequenced the posterior end of the <it>HoxD </it>cluster of a caecilian and performed comparative analyses of this region using <it>HoxD </it>clusters of other vertebrates. We determined the presence of conserved non-coding sequences and traced gains and losses of these footprints during vertebrate evolution, with particular focus on amphibians. We found that the caecilian <it>HoxD </it>cluster is almost three times larger than its mammalian counterpart. This enlargement is accompanied with the loss of one gene and the accumulation of repeats in that area. A similar phenomenon was observed in the coelacanth, where a different gene was lost and expansion of the area where the gene was lost has occurred. At least one phylogenetic footprint present in all vertebrates was lost in amphibians. This conserved region is a known regulatory element and functions as a boundary element in neural tissue to prevent expression of <it>Hoxd </it>genes.</p> <p>Conclusion</p> <p>The posterior part of the <it>HoxD </it>cluster of <it>Typhlonectes natans </it>is among the largest known today. The loss of <it>Hoxd-12 </it>and the expansion of the intergenic region may exert an influence on the limb enhancer, by having to bypass a distance seven times that of regular <it>HoxD </it>clusters. Whether or not there is a correlation with the loss of limbs remains to be investigated. These results, together with data on other vertebrates show that the tetrapod <it>Hox </it>clusters are more variable than previously thought.</p
Multiple Promoters and Alternative Splicing: Hoxa5 Transcriptional Complexity in the Mouse Embryo
The genomic organization of Hox clusters is fundamental for the precise spatio-temporal regulation and the function of each Hox gene, and hence for correct embryo patterning. Multiple overlapping transcriptional units exist at the Hoxa5 locus reflecting the complexity of Hox clustering: a major form of 1.8 kb corresponding to the two characterized exons of the gene and polyadenylated RNA species of 5.0, 9.5 and 11.0 kb. This transcriptional intricacy raises the question of the involvement of the larger transcripts in Hox function and regulation.We have undertaken the molecular characterization of the Hoxa5 larger transcripts. They initiate from two highly conserved distal promoters, one corresponding to the putative Hoxa6 promoter, and a second located nearby Hoxa7. Alternative splicing is also involved in the generation of the different transcripts. No functional polyadenylation sequence was found at the Hoxa6 locus and all larger transcripts use the polyadenylation site of the Hoxa5 gene. Some larger transcripts are potential Hoxa6/Hoxa5 bicistronic units. However, even though all transcripts could produce the genuine 270 a.a. HOXA5 protein, only the 1.8 kb form is translated into the protein, indicative of its essential role in Hoxa5 gene function. The Hoxa6 mutation disrupts the larger transcripts without major phenotypic impact on axial specification in their expression domain. However, Hoxa5-like skeletal anomalies are observed in Hoxa6 mutants and these defects can be explained by the loss of expression of the 1.8 kb transcript. Our data raise the possibility that the larger transcripts may be involved in Hoxa5 gene regulation.Our observation that the Hoxa5 larger transcripts possess a developmentally-regulated expression combined to the increasing sum of data on the role of long noncoding RNAs in transcriptional regulation suggest that the Hoxa5 larger transcripts may participate in the control of Hox gene expression
Structure of mammalian respiratory complex I.
Complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in the cell, powers ATP synthesis in mammalian mitochondria by using the reducing potential of NADH to drive protons across the inner mitochondrial membrane. Mammalian complex I (ref. 1) contains 45 subunits, comprising 14 core subunits that house the catalytic machinery (and are conserved from bacteria to humans) and a mammalian-specific cohort of 31 supernumerary subunits. Knowledge of the structures and functions of the supernumerary subunits is fragmentary. Here we describe a 4.2-Å resolution single-particle electron cryomicroscopy structure of complex I from Bos taurus. We have located and modelled all 45 subunits, including the 31 supernumerary subunits, to provide the entire structure of the mammalian complex. Computational sorting of the particles identified different structural classes, related by subtle domain movements, which reveal conformationally dynamic regions and match biochemical descriptions of the 'active-to-de-active' enzyme transition that occurs during hypoxia. Our structures therefore provide a foundation for understanding complex I assembly and the effects of mutations that cause clinically relevant complex I dysfunctions, give insights into the structural and functional roles of the supernumerary subunits and reveal new information on the mechanism and regulation of catalysis
An ultraconserved Hox–Pbx responsive element resides in the coding sequence of Hoxa2 and is active in rhombomere 4
The Hoxa2 gene has a fundamental role in vertebrate craniofacial and hindbrain patterning. Segmental control of Hoxa2 expression is crucial to its function and several studies have highlighted transcriptional regulatory elements governing its activity in distinct rhombomeres. Here, we identify a putative Hox–Pbx responsive cis-regulatory sequence, which resides in the coding sequence of Hoxa2 and is an important component of Hoxa2 regulation in rhombomere (r) 4. By using cell transfection and chromatin immunoprecipitation (ChIP) assays, we show that this regulatory sequence is responsive to paralogue group 1 and 2 Hox proteins and to their Pbx co-factors. Importantly, we also show that the Hox–Pbx element cooperates with a previously reported Hoxa2 r4 intronic enhancer and that its integrity is required to drive specific reporter gene expression in r4 upon electroporation in the chick embryo hindbrain. Thus, both intronic as well as exonic regulatory sequences are involved in Hoxa2 segmental regulation in the developing r4. Finally, we found that the Hox–Pbx exonic element is embedded in a larger 205-bp long ultraconserved genomic element (UCE) shared by all vertebrate genomes. In this respect, our data further support the idea that extreme conservation of UCE sequences may be the result of multiple superposed functional and evolutionary constraints
Heterochronic Shift in Hox-Mediated Activation of Sonic hedgehog Leads to Morphological Changes during Fin Development
We explored the molecular mechanisms of morphological transformations of vertebrate paired fin/limb evolution by comparative gene expression profiling and functional analyses. In this study, we focused on the temporal differences of the onset of Sonic hedgehog (Shh) expression in paired appendages among different vertebrates. In limb buds of chick and mouse, Shh expression is activated as soon as there is a morphological bud, concomitant with Hoxd10 expression. In dogfish (Scyliorhinus canicula), however, we found that Shh was transcribed late in fin development, concomitant with Hoxd13 expression. We utilized zebrafish as a model to determine whether quantitative changes in hox expression alter the timing of shh expression in pectoral fins of zebrafish embryos. We found that the temporal shift of Shh activity altered the size of endoskeletal elements in paired fins of zebrafish and dogfish. Thus, a threshold level of hox expression determines the onset of shh expression, and the subsequent heterochronic shift of Shh activity can affect the size of the fin endoskeleton. This process may have facilitated major morphological changes in paired appendages during vertebrate limb evolution
- …