1,879 research outputs found

    Large magnetic anisotropy in Ferrihydrite nanoparticles synthesized from reverse micelles

    Full text link
    Six-line ferrihydrite(FH) nanoparticles have been synthesized in the core of reverse micelles, used as nanoreactors to obtain average particle sizes \approx 2 to 4 nm. The blocking temperatures TBmT_B^m extracted from magnetization data increased from 10\approx 10 to 20 K for increasing particle size. Low-temperature \MOS measurements allowed to observe the onset of differentiated contributions from particle core and surface as the particle size increases. The magnetic properties measured in the liquid state of the original emulsion showed that the \FH phase is not present in the liquid precursor, but precipitates in the micelle cores after the free water is freeze-dried. Systematic susceptibility \chi_{ac}(\emph{f},T) measurements showed the dependence of the effective magnetic anisotropy energies EaE_{a} with particle volume, and yielded an effective anisotropy value of Keff=312±10K_{eff} = 312\pm10 kJ/m3^3.Comment: 8 pages, 10 figures. Nanotechnology, v17 (Nov. 2006) In pres

    Photoactivation experiment on 197Au and its implications for the dipole strength in heavy nuclei

    Full text link
    The 197Au(gamma,n) reaction is used as an activation standard for photodisintegration studies on astrophysically relevant nuclei. At the bremsstrahlung facility of the superconducting electron accelerator ELBE (Electron Linear accelerator of high Brilliance and low Emittance) of Forschungszentrum Dresden-Rossendorf, photoactivation measurements on 197Au have been performed with bremsstrahlung endpoint energies from 8.0 to 15.5 MeV. The measured activation yield is compared with previous experiments as well as with calculations using Hauser-Feshbach statistical models. It is shown that the experimental data are best described by a two-Lorentzian parametrization with taking the axial deformation of 197Au into account. The experimental 197Au(gamma,n) reaction yield measured at ELBE via the photoactivation method is found to be consistent with previous experimental data using photon scattering or neutron detection methods.Comment: 9 page

    Photodissociation of p-process nuclei studied by bremsstrahlung induced activation

    Full text link
    A research program has been started to study experimentally the near-threshold photodissociation of nuclides in the chain of cosmic heavy element production with bremsstrahlung from the ELBE accelerator. An important prerequisite for such studies is good knowledge of the bremsstrahlung distribution which was determined by measuring the photodissociation of the deuteron and by comparison with model calculations. First data were obtained for the astrophysically important target nucleus 92-Mo by observing the radioactive decay of the nuclides produced by bremsstrahlung irradiation at end-point energies between 11.8 MeV and 14.0 MeV. The results are compared to recent statistical model calculations.Comment: 6 pages, 8 figures, Proceedings Nuclear Physics in Astrophysics II, May 16-20, 2005, Debrecen, Hungary. The original publication is available at www.eurphysj.or

    πNN\pi NN coupling determined beyond the chiral limit

    Get PDF
    Within the conventional QCD sum rules, we calculate the πNN\pi NN coupling constant, gπNg_{\pi N}, beyond the chiral limit using two-point correlation function with a pion. We consider the Dirac structure, iγ5i\gamma_5, at mπ2m_\pi^2 order, which has clear dependence on the PS and PV coupling schemes for the pion-nucleon interactions. For a consistent treatment of the sum rule, we include the linear terms in quark mass as they constitute the same chiral order as mπ2m_\pi^2. Using the PS coupling scheme for the pion-nucleon interaction, we obtain gπN=13.3±1.2g_{\pi N}=13.3\pm 1.2, which is very close to the empirical πNN\pi NN coupling. This demonstrates that going beyond the chiral limit is crucial in determining the coupling and the pseudoscalar coupling scheme is preferable from the QCD point of view.Comment: 8 pages, revtex, some errors are corrected, substantially revise

    Responsive Photonic Liquid Marbles

    Get PDF
    Liquid marbles have potential to serve as mini-reactors for fabricating new materials, but this has been exploited little and mostly for conventional chemical reactions. Here, we uncover the unparalleled capability of liquid marbles to act as platforms for controlling the self-assembly of a bio-derived polymer, hydroxypropyl cellulose, into a cholesteric liquid crystalline phase showing structural coloration by Bragg reflection. By adjusting the cholesteric pitch via quantitative water extraction, we achieve liquid marbles that we can tailor for structural color anywhere in the visible range. Liquid marbles respond with color change that can be detected by eye, to changes in temperature, exposure to toxic chemicals and mechanical deformation. Our concept demonstrates the advantages of using liquid marbles as a miniature platform for controlling the liquid crystal self-assembly of bio-derived polymers, and their exploitation to fabricate sustainable, responsive soft photonic objects

    Wind and trophic status explain within and among‐lake variability of algal biomass

    Get PDF
    Phytoplankton biomass and production regulates key aspects of freshwater ecosystems yet its variability and subsequent predictability is poorly understood. We estimated within‐lake variation in biomass using high‐frequency chlorophyll fluorescence data from 18 globally distributed lakes. We tested how variation in fluorescence at monthly, daily, and hourly scales was related to high‐frequency variability of wind, water temperature, and radiation within lakes as well as productivity and physical attributes among lakes. Within lakes, monthly variation dominated, but combined daily and hourly variation were equivalent to that expressed monthly. Among lakes, biomass variability increased with trophic status while, within‐lake biomass variation increased with increasing variability in wind speed. Our results highlight the benefits of high‐frequency chlorophyll monitoring and suggest that predicted changes associated with climate, as well as ongoing cultural eutrophication, are likely to substantially increase the temporal variability of algal biomass and thus the predictability of the services it provides
    corecore