102 research outputs found

    Nine new species of Dimophora from Australia (Hymenoptera: Ichneumonidae): new insights on the distribution of a poorly known genus of parasitoid wasps

    Get PDF
    Parasitoid wasps fulfil a vital role in all terrestrial ecosystems as natural enemies of spiders and insects, including many agricultural pests. Despite their value in biological control, even the most basic knowledge of species diversity is missing for large parts of the world, including Australia. The ichneumonid genus Dimophora (Cremastinae) was previously known from eight extant species that, with the exception of the Neotropical Dimophora daschi Gauld, were all believed to occur only in the Northern Hemisphere. Here, 11 species of this genus are reported for the first time from Australia, nine of which are described as new (D. biquadra n. sp., D. diabolica n. sp., D. kentmartini n. sp., D. lutulenta n. sp., D. migrosi n. sp., D. ocellata n. sp., D. ryhsi n. sp., D. ruficollis n. sp. and D. turista n. sp.). The two remaining species, D. nitens (Gravenhorst) and D. evanialis (Gravenhorst), also occur in the Holarctic region; their presence in Australia might thus reflect recent invasions. However, as the current study illustrates, our knowledge of ichneumonid diversity is far too patchy in most regions of the world to draw sound conclusions about biogeographical patterns. Phylogenetic analyses are needed to decide whether the surprisingly high diversity of Dimophora in Australia is due to a recent radiation, if it indicates that this is its centre of origin, or if it simply reflects a relict distribution of the genus. In any case, the doubling of the number of species of this rare genus demonstrates the need for taxonomic studies on parasitoid wasps in Australia

    A Nonstationary Markov Model Detects Directional Evolution in Hymenopteran Morphology

    Get PDF
    Directional evolution has played an important role in shaping the morphological, ecological, and molecular diversity of life. However, standard substitution models assume stationarity of the evolutionary process over the time scale examined, thus impeding the study of directionality. Here we explore a simple, nonstationary model of evolution for discrete data, which assumes that the state frequencies at the root differ from the equilibrium frequencies of the homogeneous evolutionary process along the rest of the tree (i.e., the process is nonstationary, nonreversible, but homogeneous). Within this framework, we develop a Bayesian approach for testing directional versus stationary evolution using a reversible-jump algorithm. Simulations show that when only data from extant taxa are available, the success in inferring directionality is strongly dependent on the evolutionary rate, the shape of the tree, the relative branch lengths, and the number of taxa. Given suitable evolutionary rates (0.1-0.5 expected substitutions between root and tips), accounting for directionality improves tree inference and often allows correct rooting of the tree without the use of an outgroup. As an empirical test, we apply our method to study directional evolution in hymenopteran morphology. We focus on three character systems: wing veins, muscles, and sclerites. We find strong support for a trend toward loss of wing veins and muscles, while stationarity cannot be ruled out for sclerites. Adding fossil and time information in a total-evidence dating approach, we show that accounting for directionality results in more precise estimates not only of the ancestral state at the root of the tree, but also of the divergence times. Our model relaxes the assumption of stationarity and reversibility by adding a minimum of additional parameters, and is thus well suited to studying the nature of the evolutionary process in data sets of limited size, such as morphology and ecolog

    The evolution of antennal courtship in diplazontine parasitoid wasps (Hymenoptera, Ichneumonidae, Diplazontinae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As predicted by theory, traits associated with reproduction often evolve at a comparatively high speed. This is especially the case for courtship behaviour which plays a central role in reproductive isolation. On the other hand, courtship behavioural traits often involve morphological and behavioural adaptations in both sexes; this suggests that their evolution might be under severe constraints, for instance irreversibility of character loss. Here, we use a recently proposed method to retrieve data on a peculiar courtship behavioural trait, i.e. antennal coiling, for 56 species of diplazontine parasitoid wasps. On the basis of a well-resolved phylogeny, we reconstruct the evolutionary history of antennal coiling and associated morphological modifications to study the mode of evolution of this complex character system.</p> <p>Results</p> <p>Our study reveals a large variation in shape, location and ultra-structure of male-specific modifications on the antennae. As for antennal coiling, we find either single-coiling, double-coiling or the absence of coiling; each state is present in multiple genera. Using a model comparison approach, we show that the possession of antennal modifications is highly correlated with antennal coiling behaviour. Ancestral state reconstruction shows that both antennal modifications and antennal coiling are highly congruent with the molecular phylogeny, implying low levels of homoplasy and a comparatively low speed of evolution. Antennal coiling is lost on two independent occasions, and never reacquired. A zero rate of regaining antennal coiling is supported by maximum parsimony, maximum likelihood and Bayesian approaches.</p> <p>Conclusions</p> <p>Our study provides the first comparative evidence for a tight correlation between male-specific antennal modifications and the use of the antennae during courtship. Antennal coiling in Diplazontinae evolved at a comparatively low rate, and was never reacquired in any of the studied taxa. This suggests that the loss of antennal coiling is irreversible on the timescale examined here, and therefore that evolutionary constraints have greatly influenced the evolution of antennal courtship in this group of parasitoid wasps. Further studies are needed to ascertain whether the loss of antennal coiling is irreversible on larger timescales, and whether evolutionary constraints have influenced courtship behavioural traits in a similar way in other groups.</p

    Impact of increasing morphological information by micro-CT scanning on the phylogenetic placement of Darwin wasps (Hymenoptera, Ichneumonidae) in amber.

    Get PDF
    The correct interpretation of fossils and their reliable taxonomic placements are fundamental for understanding the evolutionary history of biodiversity. Amber inclusions often preserve more morphological information than compression fossils, but are often partially hidden or distorted, which can impede taxonomic identification. Here, we studied four new fossil species of Darwin wasps from Baltic and Dominican amber, using micro computed tomography (micro-CT) scans and 3D reconstructions to accurately interpret and increase the availability of morphological information. We then infer their taxonomic placement in a Bayesian phylogenetic analysis by combining morphological and molecular data of extant and fossil Darwin wasps and evaluate the impact and usefulness of the additional information from micro-CT scanning. The results show that although we gained significant morphological information from micro-CT scanning, especially concerning measurements and hidden dorsal and ventral structures, this did not impact subfamily-level placement for any of the four fossils. However, micro-CT scanning improved the precision of fossil placements at the genus level, which might be key in future dating and diversification analyses. Finally, we describe the four new fossil species as Rhyssa gulliveri sp. nov. in Rhyssinae, Triclistus levii sp. nov. in Metopiinae, Firkantus freddykruegeri gen. et. sp. nov. in Pimplinae and Magnocula sarcophaga gen. et sp. nov. in Phygadeuontinae. The first two species are the first known representatives of the subfamilies Rhyssinae and Metopiinae in amber. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s13358-023-00294-2

    Classifying fossil Darwin wasps (Hymenoptera: Ichneumonidae) with geometric morphometrics of fore wings.

    Get PDF
    Linking fossil species to the extant diversity is often a difficult task, and the correct interpretation of character evidence is crucial for assessing their taxonomic placement. Here, we make use of geometric morphometrics of fore wings to help classify five fossil Darwin wasps from the Early Eocene Fur Formation in Denmark into subfamilies and often tribes. We compile a reference dataset with 342 fore wings of nine extant subfamilies and nine relevant fossil species. Since geometric morphometrics was mostly ignored in the past in Darwin wasp classification, the dataset is first used to examine differences and similarities in wing venation among subfamilies. In a next step, we used the reference dataset to inform the classification of the fossil species, which resulted in the description of one new genus and five new species, Crusopimpla weltii sp. nov., Ebriosa flava gen. et sp. nov., Entypoma? duergari sp. nov., Lathrolestes? zlatorog sp. nov., and Triclistus bibori sp. nov., in four different subfamilies. Carefully assessing data quality, we show that the fore wing venation of fossil Darwin wasps is surprisingly suitable to assign them to a subfamily or even lower taxonomic level, especially when used in conjunction with characters from other parts of the body to narrow down a candidate set of potential subfamilies and tribes. Our results not only demonstrate a fast and useful approach to inform fossil classification but provide a basis for future investigations into evolutionary changes in fore wings of ichneumonids. The high informativeness of wing venation for classification furthermore could be harvested for phylogenetic analyses, which are otherwise often hampered by homoplasy in this parasitoid wasp family

    Incongruent molecular and morphological variation in the crab spider Synema globosum (Araneae, Thomisidae) in Europe

    Get PDF
    Establishing species boundaries is one of the challenges taxonomists around the world have been tackling for centuries. The relation between intraspecific and interspecific variability is still under discussion and in many taxa it remains understudied. Here the hypothesis of single versus multiple species of the crab spider Synema globosum (Fabricius) is tested. The wide distribution range as well as its high morphological variability makes this species an interesting candidate for re-evaluation using an integrative approach. This study combines information from barcoding, phylogenetic reconstruction based on mitochondrial CO1 and ITS2 of more than 60 specimens collected over a wide range of European localities, and morphology. The findings show deep clades with up to 6% mean pairwise distance in the CO1 barcode without any biogeographical pattern. The nuclear ITS2 gene did not support the CO1 clades. Morphological assessment of somatic and genital characters in males and females and a morphometric analysis of the male palp uncovered high intraspecific variation that does not match the CO1 or ITS2 phylogenies or biogeography either. Screening for endosymbiotic Wolbachia bacteria was conducted and only a single infected specimen was found. Several scenarios might explain these inconsistent patterns. While the deep divergences in the barcoding marker might suggest cryptic or ongoing speciation or geographical isolation in the past, the lack of congruent variation in the nuclear ITS2 gene or the studied morphological character systems, especially the male palp, indicates that S. globosum might simply be highly polymorphic both in terms of its mtDNA and morphology. Therefore, more data on ecology and behaviour and full genome sequences are necessary to ultimately resolve this taxonomically intriguing case

    The hymenopteran tree of life: evidence from protein-coding genes and objectively aligned ribosomal data

    Get PDF
    Previous molecular analyses of higher hymenopteran relationships have largely been based on subjectively aligned ribosomal sequences (18S and 28S). Here, we reanalyze the 18S and 28S data (unaligned about 4.4 kb) using an objective and a semi-objective alignment approach, based on MAFFT and BAli-Phy, respectively. Furthermore, we present the first analyses of a substantial protein-coding data set (4.6 kb from one mitochondrial and four nuclear genes). Our results indicate that previous studies may have suffered from inflated support values due to subjective alignment of the ribosomal sequences, but apparently not from significant biases. The protein data provide independent confirmation of several earlier results, including the monophyly of non-xyelid hymenopterans, Pamphilioidea + Unicalcarida, Unicalcarida, Vespina, Apocrita, Proctotrupomorpha and core Proctotrupomorpha. The protein data confirm that Aculeata are nested within a paraphyletic Evaniomorpha, but cast doubt on the monophyly of Evanioidea. Combining the available morphological, ribosomal and protein-coding data, we examine the total-evidence signal as well as congruence and conflict among the three data sources. Despite an emerging consensus on many higher-level hymenopteran relationships, several problems remain unresolved or contentious, including rooting of the hymenopteran tree, relationships of the woodwasps, placement of Stephanoidea and Ceraphronoidea, and the sister group of Aculeata

    A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera

    Get PDF
    unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

    Mind the Outgroup and Bare Branches in Total-Evidence Dating: a Case Study of Pimpliform Darwin Wasps (Hymenoptera, Ichneumonidae)

    Get PDF
    Taxon sampling is a central aspect of phylogenetic study design, but it has received limited attention in the context of total-evidence dating, a widely used dating approach that directly integrates molecular and morphological information from extant and fossil taxa. We here assess the impact of commonly employed outgroup sampling schemes and missing morphological data in extant taxa on age estimates in a total-evidence dating analysis under the uniform tree prior. Our study group is Pimpliformes, a highly diverse, rapidly radiating group of parasitoid wasps of the family Ichneumonidae. We analyze a data set comprising 201 extant and 79 fossil taxa, including the oldest fossils of the family from the Early Cretaceous and the first unequivocal representatives of extant subfamilies from the mid Paleogene. Based on newly compiled molecular data from ten nuclear genes and a morphological matrix that includes 222 characters, we show that age estimates become both older and less precise with the inclusion of more distant and more poorly sampled outgroups. These outgroups not only lack morphological and temporal information, but also sit on long terminal branches and considerably increase the evolutionary rate heterogeneity. In addition, we discover an artefact that might be detrimental for total-evidence dating: “bare-branch attraction”, namely high attachment probabilities of certain fossils to terminal branches for which morphological data are missing. Using computer simulations, we confirm the generality of this phenomenon and show that a large phylogenetic distance to any of the extant taxa, rather than just older age, increases the risk of a fossil being misplaced due to bare-branch attraction. After restricting outgroup sampling and adding morphological data for the previously attracting, bare branches, we recover a Jurassic origin for Pimpliformes and Ichneumonidae. This first age estimate for the group not only suggests an older origin than previously thought, but also that diversification of the crown group happened well before the Cretaceous-Paleogene boundary. Our case study demonstrates that in order to obtain robust age estimates, total-evidence dating studies need to be based on a thorough and balanced sampling of both extant and fossil taxa, with the aim of minimizing evolutionary rate heterogeneity and missing morphological information.</p

    A macroevolutionary role for chromosomal fusion and fission in Erebia butterflies.

    Get PDF
    The impact of large-scale chromosomal rearrangements, such as fusions and fissions, on speciation is a long-standing conundrum. We assessed whether bursts of change in chromosome numbers resulting from chromosomal fusion or fission are related to increased speciation rates in Erebia, one of the most species-rich and karyotypically variable butterfly groups. We established a genome-based phylogeny and used state-dependent birth-death models to infer trajectories of karyotype evolution. We demonstrated that rates of anagenetic chromosomal changes (i.e., along phylogenetic branches) exceed cladogenetic changes (i.e., at speciation events), but, when cladogenetic changes occur, they are mostly associated with chromosomal fissions rather than fusions. We found that the relative importance of fusion and fission differs among Erebia clades of different ages and that especially in younger, more karyotypically diverse clades, speciation is more frequently associated with cladogenetic chromosomal changes. Overall, our results imply that chromosomal fusions and fissions have contrasting macroevolutionary roles and that large-scale chromosomal rearrangements are associated with bursts of species diversification
    corecore