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Abstract.—Directional evolution has played an important role in shaping the morphological, ecological, and molecular
diversity of life. However, standard substitution models assume stationarity of the evolutionary process over the time scale
examined, thus impeding the study of directionality. Here we explore a simple, nonstationary model of evolution for discrete
data, which assumes that the state frequencies at the root differ from the equilibrium frequencies of the homogeneous
evolutionary process along the rest of the tree (i.e., the process is nonstationary, nonreversible, but homogeneous). Within
this framework, we develop a Bayesian approach for testing directional versus stationary evolution using a reversible-jump
algorithm. Simulations show that when only data from extant taxa are available, the success in inferring directionality is
strongly dependent on the evolutionary rate, the shape of the tree, the relative branch lengths, and the number of taxa. Given
suitable evolutionary rates (0.1–0.5 expected substitutions between root and tips), accounting for directionality improves
tree inference and often allows correct rooting of the tree without the use of an outgroup. As an empirical test, we apply
our method to study directional evolution in hymenopteran morphology. We focus on three character systems: wing veins,
muscles, and sclerites. We find strong support for a trend toward loss of wing veins and muscles, while stationarity cannot be
ruled out for sclerites. Adding fossil and time information in a total-evidence dating approach, we show that accounting for
directionality results in more precise estimates not only of the ancestral state at the root of the tree, but also of the divergence
times. Our model relaxes the assumption of stationarity and reversibility by adding a minimum of additional parameters,
and is thus well suited to studying the nature of the evolutionary process in data sets of limited size, such as morphology
and ecology. [Bayesian inference; continuous-time Markov model; directional selection; Hymenoptera; morphology; neutral
evolution; nonstationary; positive selection, Symphyta.]

Since the dawn of evolutionary biology, the nature
of the evolutionary process has been hotly contested.
The relative importance of phenomena such as
directional evolution, punctuated equilibrium, and
stasis is still debated (Eldredge and Gould 1972;
Hunt 2007; Pennell et al. 2014) despite numerous
attempts to find signatures of the evolutionary
process in the morphological, ecological, or molecular
characters of extant and extinct organisms (e.g., Carmel
et al. 2007; Hunt 2007; Sookias et al. 2012; Finarelli
and Goswami 2013; Shoemaker and Clauset 2014).
Depending on the groups examined, timescales studied,
and methodologies applied, biologists tend to arrive
at very different conclusions with respect to the
predominant evolutionary mechanisms at play.

The term “directional evolution” is here used to refer
to a nonrandom shift in the marginal distribution of
traits over evolutionary time. To distinguish such trends
or tendencies from stochastic events, it is typically
necessary to study change over time in collections of
traits or across multiple lineages. Directional change can
result from a number of microevolutionary processes,
both active and passive. Adaptation or directional
selection is one possible explanation. For instance,
selection for improved defense against predation has
been invoked to explain the increase in body size over
evolutionary time observed in various groups (Cope’s
Rule; Cope 1885) (note that some authors have argued
that the apparent increase in body size is a statistical

artifact; Hone and Benton 2005; Zanno and Makovicky
2012). Directional patterns could also result from biased
starting conditions followed by an entirely unbiased
process, which would create increasingly extreme traits
simply due to an increase in the variance over time.
This scenario was put forward by Gould (1996) to
explain the apparent increase in complexity during the
evolution of life, which he suggested does not reflect
an underlying pull toward higher complexity, but is
simply a consequence of life beginning at very low
complexity levels. In this article, we focus on detecting
directional patterns without addressing the specific
micro- or macroevolutionary mechanisms at work.

The stochastic framework has proven useful for testing
competing hypotheses concerning the nature of the
evolutionary process (e.g., Blomberg et al. 2003; Hunt
2006; Pagel and Meade 2006). Besides allowing for a
better understanding of the evolution of characters,
more realistic stochastic evolutionary models might
also increase the accuracy of phylogenetic analyses,
especially if the latter are based on morphological or
ecological data that match standard models poorly
(Felsenstein 1973; Lewis 2001). The use of morphological
characters in phylogenetics has experienced a recent
resurgence with the introduction of total-evidence
dating methods which attempt to accommodate the
uncertainty in the phylogenetic placement of fossils
using morphological data (Pyron 2011; Ronquist et al.
2012a; Wood et al. 2013). The success of these
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methods relies on adequate modeling of morphological
evolution.

For continuous morphological characters, various
directional models have been considered, for example
biased random walks (Hunt 2006), Uhlenbeck and
Ornstein processes (Blomberg et al. 2003), or Lévy
processes (Landis et al. 2013). However, here we focus
on models for discrete morphological data. Virtually all
work to date on qualitative character evolution has been
based on continuous-time Markov processes running
over finite state spaces. In its most general form, a Markov
process only has to satisfy the criterion of being memory-
less, that is, conditioned on the current state of the
process, its future and past are independent (the general
Markov model (GMM); Barry and Hartigan 1987). In
evolutionary biology, it is commonly assumed that the
process is also homogeneous, time-reversible, and at
stationarity (reviewed in Jermiin et al. 2008).

Stationarity is achieved when a process has been
running for long enough that its current state is no
longer dependent on the starting state, but can be
considered drawn from the stationary distribution of
the process (Fig. 1a). Homogeneity means that the
process does not change over time or across lineages
(Fig. 1b). Time-reversibility refers to the fact that the
stochastic fluctuations of the process at stationarity
are indistinguishable regardless of the flow of time
(Fig. 1c). These properties are often misunderstood.
Rate asymmetries, that is different rates of forward
and backward substitutions, have little to do with
them; even homogeneous, time-reversible processes
at stationarity can have extreme asymmetries in the
exchange rates between states. Both heterogeneous and
time-irreversible processes may be at stationarity, in
which case the system does not display any long-term
trends. Directional evolution, as we defined it (see
above), is the same as saying that the process is not at
stationarity; directional evolution does not imply that
the process is necessarily heterogeneous (but it is time-
irreversible by definition). Expressed in terms familiar to
Bayesian phylogeneticists, directionality simply means
that evolution is not yet out of the “burn-in phase” and
thus has not yet reached the equilibrium state of the
process.

The most commonly used models of molecular
evolution assume stationarity, homogeneity, and time-
reversibility, but several nonstationary alternatives have
been considered, mostly in the context of nucleotide or
amino acid sequences that vary in base composition
over time or across lineages (Lockhart et al. 1994;
Yang and Roberts 1995; Galtier and Gouy 1998; Foster
2004; Jayaswal et al. 2005, 2007, 2011a, 2011b, 2014;
Blanquart and Lartillot 2006, 2008; Boussau and Gouy
2006; Boussau et al. 2008; Dutheil et al. 2012; Zou
et al. 2012; Groussin et al. 2013). Standard models for
discrete morphological data are even simpler than the
ones commonly used to model molecular evolution.
In addition to stationarity, homogeneity, and time-
reversibility, they also assume equal state frequencies
and exchangeability rates due to the arbitrary nature of

the state labels of most morphological data sets (Lewis
2001). To our knowledge, nonstationary models have
not been considered for discrete morphological data
previously.

Here, we explore the simplest possible nonstationary
model for morphology: a homogeneous process for
binary characters which is not assumed to start at
equilibrium. We develop a Bayesian reversible-jump
(RJ) approach to test this model against a stationary
model and use simulations to identify the conditions
under which it is possible to detect directional evolution.
Finally, we use our method to study directional evolution
in the morphology of the Hymenoptera (ants, wasps, and
bees).

The literature on hymenopteran morphology is rich
(e.g., Gibson 1986; Rasnitsyn 1988; Vilhelmsen 2001;
Krogmann and Vilhelmsen 2006; Beutel and Vilhelmsen
2007; Vilhelmsen et al. 2010) and provides easy access
to large sets of qualitative characters. There is also
a vivid discussion on directional tendencies among
hymenopteran morphologists, for instance toward
reduction in wing venation (Brown and Nutting
1949). Xyelids, probably the sister group of all other
Hymenoptera (e.g., Ronquist et al. 2012a; Malm and
Nyman 2015), have the most complete venation of any
hymenopteran, and the pattern is virtually identical to
that of the earliest known hymenopteran fossils from
the Triassic. The loss of wing veins appears to be partly
associated with a reduction in body size, a common trend
in several hymenopteran lineages, leading many authors
to conclude that wing loss characters are unreliable for
reconstructing higher-level hymenopteran phylogeny
(Sharkey and Roy 2002). But body size is not the only
factor driving the evolution of wing venation since
there are both small hymenopterans with rich venation
(e.g., xyelids) and large hymenopterans with reduced
venation (e.g., orussids, ibaliids, and pelecinids).

Reductions and simplifications from the
hymenopteran ground plan have also been observed in
muscles, sclerites, and articulations (Vilhelmsen et al.
2010). To our knowledge, however, there has been no
attempt to date to quantify these tendencies, nor to
analyze them in a probabilistic framework. Here, we
use our Bayesian RJ approach to test for directionality
in the evolution of hymenopteran wing veins, muscles,
and sclerites in a data set including both extant and
fossil taxa. Finally, we examine the effect of accounting
for directional morphological evolution in the context
of total-evidence dating.

MATERIALS AND METHODS

Implementation of a Nonstationary Model for Binary
Characters

We implemented a nonstationary model of evolution
for binary characters in MrBayes 3.2 (Ronquist et al.
2012b). The model assumes a single instantaneous rate
matrix over the whole tree, and allows for the state
frequencies at the root to differ from the stationary
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c)
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FIGURE 1. Commonly adopted simplifications of the General Markov Model: stationarity, homogeneity, and time-reversibility. a) Nonstationary
and stationary phase of a Markov process with differing starting and equilibrium state frequencies (dotted and dashed lines), for a two-
state character with symmetric transition probabilities. b) Nonhomogeneous Markov process with changing equilibrium frequencies (dotted
and dashed lines) over time. c) Example of time-irreversible and time-reversible processes (left) for a character with three states, with their
instantaneous rate matrices (middle); the equilibrium frequencies of both processes are the same but states 1 and 2 follow different trajectories
during the nonstationary phase (right). Even at stationarity, there are similar asymmetries in the stochastic fluctuations of the time-irreversible
process.

frequencies of the process (Boussau and Gouy 2006). The
model thus accounts for nonstationarity, even though the
process along the branches is homogeneous. Since the
model is directional, probabilities have to be computed
on rooted trees, but the position of the root does not
have to be specified a priori. The additional parameters
of the model, the root frequencies, are updated during
the Markov chain Monte Carlo (MCMC) procedure in the
same way as the stationary frequencies, using standard
sliding window and Dirichlet proposal mechanisms. The
model, which is currently only available for binary data
(data type “restriction”), can be invoked in MrBayes
by the command “lset statefreqmodel = directional”
(instead of “stationary”, the default), and the prior on the
root frequencies is set with the command “prset rootfreq
= dirichlet/fixed” (see the “help” function in MrBayes
for details).

To allow for direct model testing and to integrate over
model uncertainty, we implemented a RJ algorithm, that
is, a transdimensional MCMC (Green 1995, 2003) which
jumps between the stationary and nonstationary models.
We assume equal prior probabilities of the two models,
and use a split-merge move as follows. In the split move,
we obtain new stationary and root frequencies by two
independent draws from a beta distribution centered on
the stationary frequencies in the previous generation,
with the variance of the distribution used as a tuning
parameter. The merge move draws new stationary
frequencies from a beta distribution with the mean
equal to the average of the previous stationary and root
frequencies, under the same tuning parameter as in the
split move. This move has a Jacobian of 1, as calculated
following the approach detailed in Green (2003) and
confirmed by running the model without data, which
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returned the prior probabilities for the stationary and
directional models. As the directional-evolution model
requires a rooted tree, this is assumed throughout, even
while the MCMC is sampling under the stationary model
and there is thus no information about the placement of
the root. When there is a low but significant probability
for the directional model, the information about the
position of the root is gradually lost while sampling
from the stationary model, reducing the acceptance
rate of swaps back to the directional model. Under
such conditions, a rooting constraint can be introduced
to improve mixing. Both the root frequencies and
stationary frequencies are updated with sliding-window
and Dirichlet proposals. The command in MrBayes to
invoke the RJ approach is “lset statefreqmodel = mixed”.
The implementations of the directional model and RJ
algorithm were tested by running the MCMC without
data, which recovered the prior distributions of state
frequencies, model probabilities, and topology (results
not shown).

Simulation Study
To study the performance of the model and test

for circumstances under which directional evolution
could be discerned based on data from only extant
taxa, we performed simulations in R using the “ape”
package, including the “matexpo” function (Paradis
et al. 2004; R Development Core Team 2009), and a
number of newly developed functions. All R scripts
are available as Supplementary Material on Dryad
at http://dx.doi.org/10.5061/dryad.0sn23. We use the
term “branch” to specify a single edge of the phylogeny
(in contrast to “lineage” which can denote a collection
of edges) and “tree” to denote a topology with branch
lengths.

We tested the influence of the shape of the tree (see
below), the number of taxa sampled (8 or 16), the
evolutionary rate in expected substitutions from the
root to any of the tips (0.01 to 1), and the strength
of directionality, that is, the difference between root
and stationary frequencies (several combinations of the
state frequencies 0.1, 0.3, 0.5, 0.7, and 0.9 were used,
either the same at the root and at equilibrium to
simulate stationarity, or different to mimic directional
evolution). We used three tree shapes that represent
extremes in terms of topology and branch lengths: (i)
an entirely balanced tree with Grafen branch lengths
(where the height of each node is equal to the number
of subtended terminals minus one, divided by the root
height; Grafen 1989) (tree A); (ii) an entirely unbalanced
tree with Grafen branch lengths (tree B); and (iii) an
entirely unbalanced tree with all branches of equal
lengths (tree C) (Fig. 2). The trees were scaled so
that trees A and B, whose branch lengths conform
to a molecular clock, have a root-tip distance of one,
while tree C was scaled so that the average root-tip
distance was 1. On these trees, we simulated 1000 (in
the case of trees with eight taxa) or 100 (for 16 taxa)
data sets of 100 binary characters each. These data sets

were analyzed in MrBayes under the stationary and
directional models and using the RJ approach, running
two independent runs with one cold and one heated
chain for 100,000 generations, sampling every 100th
generation. We assumed that only the variable characters
could be observed (using the command “lset coding
= variable”), thus effectively excluding the constant
characters from the analyses. Such an ascertainment bias
is well suited for analyzing morphological or restriction-
site data which are the focus here, but is less appropriate
for data such as DNA or amino acid sequences where
constant characters are also observed. We employed
R scripts to study the power to distinguish between
directional and stationary evolution, the impact on
topology inference and root recovery, and the accuracy
of the inferred state frequencies at the root and at
equilibrium. Simulations and analyses were run at the
National Supercomputer Center at Linköping University
in Sweden (NSC).

Empirical Example: Hymenopteran Morphology
We modified the morphological data set in Ronquist

et al. (2012a) by recoding all wing vein, muscle, and
sclerite characters so that they followed the same state
labeling, with zeros for the state “absent” (or “fused”
in muscles and sclerites) and ones for “present” (or
“separate” for muscles and sclerites). All other characters
were left unchanged. A list of characters is given
in Supplementary Table S1, available on Dryad at
http://dx.doi.org/10.5061/dryad.0sn23.

First, we analyzed the wing vein (23 characters),
muscle (56 characters), and sclerite data (67 characters)
in combination with the remaining morphological
characters (208 characters), invoking a separate
directional or stationary model for each of the binary
partitions, under a “variable” coding bias and gamma-
distributed among-character rate variation. We used
a more restrictive and a more diffuse branch length
prior, that is, an exponential distribution of mean 0.1
and of mean 1, respectively. The morphology-only
analyses employed four independent runs of one cold
and three heated chains each, sampling every 1000th
of 10 million generations. Convergence was assessed
through the potential scale reduction factor (PSRF,
smaller than 1.01 unless mentioned otherwise) for scalar
parameters and the average standard deviation of split
frequencies (ASDSF, below 0.02) for the topology. To
calculate Bayes factors for model comparison, we used
the stepping-stone algorithm (Xie et al. 2011) with
49 steps of 1,000,000 generations each plus 1,000,000
generations as initial burn-in, and 250,000 generations
burn-in within each step. The alpha parameter was set
to 0.4, and sampling went from the posterior to the prior.
All of the steps reached an ASDSF below 0.03, except for
the last 10 steps (sampling close to the prior) in which
no split reached the minimum frequency of 0.1.

We then added the molecular data from Ronquist
et al. (2012a) to improve the estimates of topology
and relative branch lengths, once more running the

http://dx.doi.org/10.5061/dryad.0sn23
http://dx.doi.org/10.5061/dryad.0sn23
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a) b)

c) d)

e) f)

FIGURE 2. Impact of tree shape on the recovery of the directional model and the correct rooting of the tree. One hundred data sets of
100 characters were simulated for each setting. (a, c, e) Recovered posterior probability (pp) of the directional model under a fixed or inferred
topology. Data sets of 100 characters each were simulated with a frequency of state 0 at the root of 0.1 and under a process with a stationary
frequency of state 0 of 0.9. The x-axis shows the evolutionary rate in expected changes between root and tips. The horizontal line indicates
the significance threshold at 0.95. (b, d, f) Proportion of correctly rooted trees inferred under the directional model for two different levels of
asymmetry; root and stationary frequencies of 0.7 and 0.3, and of 0.9 and 0.1, respectively.
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binary morphological partitions under the stationary
and directional models using the RJ approach. The
molecular data were partitioned into genes and first
and second versus third codon positions in the protein-
coding genes, and a separate RJ algorithm over the
GTR-model subspace (Huelsenbeck et al. 2004) was
used for each partition, combined with discrete gamma-
distributed among-site rate variation and a proportion of
invariant sites. We used an exponential distribution with
rate 10 (mean 0.1) as the branch-length prior. Settings
for the MCMC search and convergence diagnostics were
the same as in the case of the morphology-only analyses.
Model testing was performed using the RJ algorithm, but
no stepping-stone approach, given the slow convergence
close to the prior observed for the morphology-only
analyses and the large computational effort associated
with this algorithm.

Finally, we repeated the total-evidence dating analysis
as detailed in Ronquist et al. (2012a), including fossil
morphology and fossil ages in the data matrix, with
the updated morphological data set and under the
stationary and directional models as well as with the
RJ approach. Topology convergence was lower than
in the nonclock analyses (ASDSF of 0.047, 0.055, and
0.035, respectively, for the directional, stationary, and
RJ analyses), and the clock-rate estimates showed some
deviations between runs as well (PSRF of 1.07, 1.04,
and 1.02, respectively). All analyses were run at the
National Supercomputer Center at Linköping University
in Sweden (NSC). Alignments and trees are deposited on
TreeBase (www.treebase.org, study number S16060).

RESULTS

Recovery of the Directional Model in Simulated Data Sets
Correct recovery of the directional model depends

on several factors. First of all, the evolutionary rate
has a major impact on correct inference (Figs. 2 and
3, see also Supplementary Files S3, available on Dryad
at http://dx.doi.org/10.5061/dryad.0sn23). While very
low rates (0.01–0.05 expected substitutions between root
and tip) result in too little information for distinguishing
between the models, rates of 0.5 and especially 1 seem
already too saturated in many cases. An evolutionary
rate of 0.1 or 0.2, sometimes 0.5, retains most information
about the process and the tree.

The shape of the tree also plays a major role. Detecting
directional evolution is most difficult on a balanced
tree (tree A; Fig. 2a,b), followed by the unbalanced tree
with ultrametric branch lengths (tree B; Fig. 2c,d). The
unbalanced tree with branches of equal length (tree C;
Fig. 2e,f) is the most favorable for inferring directional
evolution. In all cases, fixing the topology to the true
tree for the analysis has a positive effect. Increasing the
size of the tree from 8 to 16 taxa also increases the success
in correctly recovering the directional model (Fig. 3a,b),
especially if directionality is strong. The proportion of
analyses that recovers the correct topology is lowest for
tree B, medium for tree A, and highest for tree C (Fig. 3e,f,

see also Supplementary Files S3, available on Dryad
at http://dx.doi.org/10.5061/dryad.0sn23). In general,
the chance of inferring the entire topology correctly is
much higher for trees of 8 than for those of 16 taxa,
as one might expect for a limited number of characters.
Compared with a stationary model, topology inference
improves noticeably under the directional model when
the data have been simulated with a minimum level of
directionality. Rooting of the tree under the directional
model is easiest for trees A and C and hardest for
the unbalanced tree B with ultrametric branch lengths
(Fig. 2b,d,f). In all cases, stronger directionality (i.e.,
larger differences between the root and stationary
frequencies) improves the correct placement of the root.

The success of inferring the root frequencies and
stationary frequencies of the directional model varies
with the evolutionary rate measured from root to
tip (Fig. 3c,d). At low rates, the process is still far
from reaching its equilibrium state, and the estimated
stationary state frequencies are strongly biased toward
the starting frequencies. At rates above 0.5, saturation
diminishes the signal about the true state frequencies
at the root. The most accurate inference of both root
and stationary state frequencies occurs at intermediate
rates (0.05 to 0.2), but even in those cases, the
difference between root and stationary frequencies is
often underestimated.

When the trees are not fixed to the true topology and
very high rates are assumed (two or more expected
substitutions between root and tips), we observe
false positives in the recovery of the directional
model, and the same is the case with entirely random
data (Supplementary File S4, available on Dryad
at http://dx.doi.org/10.5061/dryad.0sn23). Further
analyses show that under such circumstances, that
is without reliable information about topology and
relative branch lengths, and in combination with an
inadequate branch length prior (we used an exponential
distribution with rate 10 throughout), the analyses
recover a balanced tree with extreme directionality
because this parameter combination increases the
probability of observing a large number of substitutions
on short branches.

Nonclock Analyses of the Hymenopteran Data Set
The analysis of the morphological data alone results in

highest posterior probabilities for the directional model
in the case of wing veins and muscles, and just below
significant support for the sclerites (Table 1 and Fig. 4a–
c). The root and stationary state frequencies differ most
strongly in the wing veins (Fig. 4a), followed by the
muscles (Fig. 4b), while they are rather similar in the
case of the sclerites (Fig. 4c). The Bayes factor estimated
via stepping-stone sampling also strongly favors the
directional model (71.6 on the log scale). While MCMC
sampling produces very similar topology samples across
runs under all models, convergence on tree height and
partition-specific rate multipliers is slower under the

http://www.treebase.org
http://dx.doi.org/10.5061/dryad.0sn23
http://dx.doi.org/10.5061/dryad.0sn23
http://dx.doi.org/10.5061/dryad.0sn23
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a) b)

c) d)

e) f)

FIGURE 3. Simulation results from data sets with medium directionality (root and stationary frequencies of state 0 of 0.3 and 0.7, respectively; a,
c, and e) and strong directionality (0.1 and 0.9, respectively; b, d, and f). One hundred data sets of 100 characters were simulated for each setting,
using a completely unbalanced tree of eight taxa (unless stated otherwise) with clock-like branch lengths (Tree B). (a, b) Recovered posterior
probability of the directional model for trees of 8 versus 16 taxa. (c, d) Estimated frequencies of state 0 at the root and at equilibrium. The
horizontal lines indicate the simulation conditions for root (dotted line) and equilibrium frequencies (dashed line). (e, f) Proportion of times the
correct, unbalanced 8-taxon topology was recovered when analyzing the data under the correct (directional) or under the incorrect (stationary)
model.
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FIGURE 4. Posterior densities of the state frequency for the state “absent” at the root and at equilibrium as estimated from the analysis of
morphology alone (a, b, c), of the combined morphology-molecules data set (d, e, f), and with added fossil data analyzed in a total-evidence
dating approach (g, h, i). The different morphological partitions are wing veins (a, d, g), muscles (b, e, h), and sclerites (c, f, i).

directional model (PSRF values around 1.04), which
indicates a problem with estimating relative branch
lengths under this model when the amount of data is
limited. The estimated tree height and rate multipliers
are also quite sensitive to the branch-length prior. The
tree height estimate increases from a median of 6.59
under an exponential branch-length prior with mean 0.1
to 117 under a prior with mean 1. Convergence, especially
of the partition-specific rate multipliers, is much worse

under the more diffuse branch-length prior, with PSRF
values of up to 1.86.

Adding molecular data resolves the problem of
inferring branch lengths and rate multipliers. The
posterior probability of the directional model remains
maximal for wing veins and muscles, but drops to 0.8 for
the sclerite partition (Table 1), with partly overlapping
posterior densities recovered for the root and stationary
state frequencies (Fig. 4f).
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TABLE 1. Inferred root and equilibrium frequencies and posterior
probabilities of the directional model as estimated through an RJ
approach for three morphological character sets

Frequency Frequency at pp of directional
at root equilibrium model

Morphology only
Wing veins 0.04 0.78 1.00
Muscles 0.08 0.73 1.00
Sclerites 0.33 0.64 0.948

Morphology and molecular data
Wing veins 0.03 0.88 1.00
Muscles 0.09 0.81 1.00
Sclerites 0.36 0.66 0.80

Dated total-evidence analysis, with fossils
Wing veins 0.03 0.83 1.00
Muscles 0.04 0.81 1.00
Sclerites 0.41 0.59 0.38

Adding Fossil and Time Information
Fossils and the corresponding time information

promise a much better chance for inferring the actual
evolutionary process than when relying on data from
extant taxa alone. The fossil data added here are very
unevenly distributed among the character partitions,
with 99% of the wing veins coded for the fossils, 7.2%
of the sclerites, but none of the muscles. Adding the
fossil information in a total-evidence dating approach
does not change the main conclusions, with wing veins
and muscles still achieving highest support for the
directional model (Table 1). The difference between
estimated root and stationary frequencies increases even
further and estimates are more precise than those
from the analyses with extant taxa alone (Fig. 4g,h).
The posterior densities of the state frequencies of the
sclerite partition, however, now overlap broadly (Fig. 4i),
indicating no support for the directional model for this
partition. The extent of directionality in certain character
systems becomes apparent when plotting the wing veins
of selected fossil and extant taxa on a random tree drawn
from the posterior distribution (the topology of which is
concordant with the majority-rule consensus tree from
the RJ analysis, Fig. 5).

The stationary and directional models, as well as the
RJ approach sampling under both models, all retrieve
similar median ages for Hymenoptera of approximately
305 Ma (Table 2). However, the precision of the estimates
increases from the stationary to the directional model,
and even further in the RJ approach, with the 95%
credibility intervals decreasing from 63 to 38 million
years (Table 2).

DISCUSSION

A Nonstationary Markov Model
While the standard model for analyzing discrete

morphological characters assumes stationarity of the
evolutionary process (Lewis 2001), the nonstationary
Markov model for binary characters suggested here

allows the modeling of biological processes that have not
yet reached their equilibrium state. The only relaxation
of the Lewis model is that the state frequencies at the
root of the phylogenetic tree are allowed to differ from
the equilibrium frequencies of the homogeneous process
running along the rest of the tree. The rate matrix is
potentially asymmetric, allowing different forward and
backward rates between the two states. The model can
also accommodate heterogeneous distributions of state
frequencies among terminals, if these are caused by
differences in evolutionary rates across lineages.

In terms of macroevolutionary inference, the model
proposed here might be useful to distinguish between
stasis and directional change. While the state frequencies
at the root coincide with the stationary frequencies
in the former, the difference between them drives
directionality in the latter. This model is especially
useful in contexts where the evolutionary process within
a group is believed to differ from the conditions in
its sister groups and thus at the root of the tree,
for instance after the appearance of a key innovation,
the colonization of a new geographical area, or the
occupation of a new ecological niche. While we apply the
model to morphological data coded with nonarbitrary
(“presence–absence”) state labels (Lewis 2001), it is also
suited for other binary data types, for example presence
or absence of introns, restriction sites, gene duplications,
or lateral gene transfers, or even behavioral or ecological
traits (e.g., Nylander et al. 2004; Alekseyenko et al.
2008; Klopfstein et al. 2010; Stern et al. 2010; Klopfstein
and Ronquist 2013). While currently only implemented
for binary data, an extension of the model to more
states is possible, for instance to model the evolution of
nucleotide or amino acid sequences.

Other variations of the finite-state Markov model
that also relax the assumptions of stationarity, time-
reversibility, and homogeneity have been proposed (for
an overview, see Jermiin et al. 2008; Jayaswal et al. 2014).
Barry and Hartigan (1987) detailed what is now referred
to as the GMM, which assumes separate, arbitrary
substitution matrices along each branch of the phylogeny
and is thus both very flexible and very parameter rich.
It has been demonstrated to suffer from identifiability
problems (Zou et al. 2011). For amino acids, Blanquart
and Lartillot (2008) suggested a model that is both site
and time heterogeneous; even though heterogeneous, it
can be seen as stationary in the broad sense because they
assume that the state frequencies at the root of the tree
correspond to the stationary frequencies of the mixture
of their heterogeneous processes. The same applies to a
three-state Markov model employed by Stern et al. (2010)
to study lateral gene transfer, and to two more general
models proposed by Jayaswal et al. (2011b).

Truly nonstationary models were suggested
repeatedly (Yang and Roberts 1995; Galtier and Gouy
1998; Pagel and Meade 2004; Jayaswal et al. 2005, 2007;
Blanquart and Lartillot 2006; Zou et al. 2012) to address
phylogenetic inference from nucleotide or amino acid
sequences that vary in base composition over time. Most
of them introduced restricted versions of the GMM
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FIGURE 5. Wing veins of selected fossil and extant taxa shown on a dated total-evidence tree from the posterior tree distribution of the RJ
analysis.
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TABLE 2. Age estimates for the ancestor of extant Hymenoptera from
total-evidence dating analyses under the stationary and directional
models and under an RJ approach sampling under both models

Median 95% credibility Interval
agea interval1 width

Stationary model 305.5 287–350 63
Directional model 305.0 289–333 44
RJ approach 304.2 289–327 38

aThe realized prior on the age of Hymenoptera, as obtained from an
MCMC run without data, had a median of 544.5 and a credibility
interval of 376–749.

which allow for some heterogeneity of the process, but
use far less parameters. In their models, only the state
frequencies are allowed to vary among branches, while
a single, simplified vector of exchangeability rates is
assumed for the entire tree. To circumvent the problem
of overparameterization that comes with branch-wise
models, alternatives were suggested that either use a
fixed number of different compositions (Foster 2004),
use clustering methods and/or likelihood-based model
testing to determine optimal numbers of parameters
(Jayaswal et al. 2011a, 2014; Dutheil et al. 2012; Groussin
et al. 2013), or employ a Poisson process to model
changes in the stationary state frequencies on the tree
(Blanquart and Lartillot 2006).

All these models relax the assumption of stationarity
while at the same time allowing for heterogeneity of
the process along the tree. However, assuming time-
heterogeneity beyond the origin of the studied group
might not always be necessary to achieve an adequate
fit of the model to the data at hand. Our model can be
seen as the simplest possible nonstationary model; it will
thus be particularly useful for situations where there is a
limited amount of data and in contexts where the largest
deviations from stationarity are expected at the root of
the tree.

Performance in Simulations
Our simulations suggest that the best conditions

for detecting directional evolution are unbalanced
trees with nonclock branch lengths, a fixed topology,
many taxa, and a strong directional drive (the latter
being determined by the difference between the state
frequencies at the root and at equilibrium). But even
under such favorable conditions, the signal left by the
directional process can only be detected for a range of
evolutionary rates that typically span 0.1 to 0.5 expected
substitutions between the root and the tips of the tree.
Interestingly, similar rates have been shown to also be
optimal for phylogenetic inference and branch length
estimation (Goldman 1998; Felsenstein 2004; Susko and
Roger 2012).

The shape of the tree also has a profound effect on
the detection of directional evolution, with unbalanced
trees being beneficial, especially if they have short
terminal branches attaching close to the root. Such
trees might result in contexts where a key innovation

speeds up speciation and evolutionary rates at the
same time (Mooers and Heard 1997). The shape of
the hymenopteran tree, with the very slowly evolving
family Xyelidae as the sister group to the remaining taxa
(Ronquist et al. 2012a), is certainly reminiscent of such a
pattern.

Even under favorable conditions and at suitable
evolutionary rates, the differences between stationary
and root frequencies are often underestimated in our
simulations, as stationary frequencies were not yet
reached in the terminals before the signal of the root
frequencies began to erode. This relates to the difficulties
associated with inferring evolutionary processes in
the distant past from extant taxa only. Even when
using adequate models that allow for directionality,
inference based on extant taxa only can be misleading,
both positively and negatively, while the incorporation
of fossil information leads to a dramatic increase in
accuracy and precision both in simulated and empirical
data (Slater et al. 2012; Finarelli and Goswami 2013).
Nevertheless, especially under certain tree shapes,
the signal left by directional evolution might still be
detectable in extant taxa using parametric statistical
inference under appropriate models.

Allowing the state frequencies at the root to differ from
the stationary state frequencies requires the computation
of rooted instead of unrooted trees. Our simulations
show that adequately modeled, directional evolution can
even be used to infer the root of a tree, at least for a
certain period after the onset of the process (Fig. 3e,f,
Huelsenbeck et al. 2002). Moreover, not accounting for
directionality cannot only mislead estimation of the
ancestral states in a phylogeny (Susko and Roger 2013),
but also of the phylogeny itself, as is evident from our
simulation results and has been shown previously for
model misspecifications in general (e.g., Felsenstein 1978;
Huelsenbeck and Rannala 2004).

Our simulations were intended to mimic
morphological data sets and were thus performed
assuming an ascertainment bias which excludes
constant characters. Especially at low evolutionary
rates, which result in numerous constant characters,
this will probably have an impact on the inference of
directionality, as constant characters can retain a lot of
information about the conditions at the root. For studies
based on different data types, for instance nucleotide or
amino acid sequences which contain constant characters
as well, recovery rates of the directional model might
thus be higher. Further studies on simulated and
empirical data sets are needed to evaluate the interplay
between ascertainment biases and the inference of
directional evolution.

At high evolutionary rates and also with random data,
we found erroneous preference for the directional model
under inappropriate branch-length priors. Support for
the directional model was often very high under such
conditions, but largely disappeared when additional
information was provided about the topology and
relative branch lengths, or if a more adequate branch-
length prior was used. To improve confidence in the
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inference of directionality, it is thus advisable to examine
the sensitivity to and adequacy of the branch-length
prior, and to add complementary information about
the topology and relative branch lengths, for instance
by adding molecular data. Including information from
fossil taxa, if available, can also help address the problem
of false positives.

The Evolution of Hymenopteran Morphology
Our results strongly support directional evolution in

hymenopteran wing venation and musculature, while
the picture is more complex in the case of sclerites. Even
though the posterior probability of directionality in the
evolution of sclerites was just shy of the 95% mark in the
pure-morphology analyses, adding molecular or fossil
data weakened the support considerably. Therefore, it
seems likely that the signal in the pure-morphology
analyses is spurious. Why is there no directionality
in the evolution of sclerites? One possibility is that
the hymenopteran exoskeleton evolves under conflicting
selection pressures. On the one hand, there may be
advantages to the structural simplifications that can
result from the loss of sclerites. On the other hand, the
exoskeleton might compensate for the loss of muscles
by increasing in complexity, using more parts and
more complex interactions between parts to allow better
control of movement by fewer muscles. Several examples
could be mentioned to support this idea. However,
until we achieve a more profound understanding of the
functional morphology of the hymenopteran body, this
largely remains the realm of speculation.

With respect to wing venation and musculature,
our results suggest that hymenopteran evolution has
essentially been a story of losses. In the case of wing
venation, the systematic trend toward simplification
across multiple lineages is beautifully illustrated by
the fossil record (Fig. 5). In fact, the frequencies of
presence and absence of wing veins among extant
terminals included in our analysis are quite different
from the estimated stationary frequencies, suggesting
that this character system is still far from reaching
equilibrium. The same holds true for muscle characters.
It is interesting to note that we were able to document
such strong directional trends despite the fact that our
analysis included so few representatives of the Apocrita,
the explosive terminal radiation of originally insect-
parasitic hymenopterans. It is especially evident within
this group that reduction of morphological features
is correlated with reduction in body size, with the
most simplified morphologies found among the smallest
hymenopteran taxa, for example Ceraphronoidea (Miko
et al. 2013), Chalcidoidea (Krogmann and Vilhelmsen
2006), Mymarommatidae (Vilhelmsen and Krogmann
2006), and Platygastridae (Austin et al. 2005). Whether
the trend toward simplification in hymenopteran
morphology is due to directional selection, for instance
through lower costs of producing fewer wing veins or
muscles, or due to developmental constraints favoring
losses over gains, is still unclear. However, the fact that

the trends are so strong even among basal hymenopteran
lineages, mostly including insects of moderate to large
body size, suggests that reduction in body size is at least
not the only causal factor. Dollo-like evolution (Gould
1970; Dollo 1893), that is, the irreversibility of losses of
complex traits, probably also plays an important role.
As evolution toward smaller body sizes has happened
several times independently and was probably reversed
multiple times during hymenopteran evolution, and as
the loss of many muscles and wing veins seems to be a
consequence of small body size (Vilhelmsen et al. 2010),
one could even envision an interaction of these two
causes, combining in a ratchet-like mechanism leading
to an accumulation of losses in different body-size-
dependent character systems (c.f. Lukes et al. 2011).

Few other studies have found empirical support
for directional evolution. Hunt (2007) compiled a
comprehensive set of over 250 fossil sequences
monitoring trait evolution in single lineages over mostly
0.5 to 6 million years. He found that only 5% of these
sequences showed statistical support for directional
change as opposed to stasis or unbiased random walks,
even though these fossil sequences had often been
recorded with such a change in mind. Hunt’s study
differs strongly from our analysis, both in temporal or
taxonomical scope and in methodology. Using data from
several lineages in a phylogenetic framework, as we
exemplify here, certainly increases the power to detect
directional patterns dramatically. Furthermore, instead
of examining single characters, our data set included 23–
67 characters in each of the morphological partitions,
and our simulations even assumed 100 characters, which
certainly increased the statistical power considerably.
However, a researcher might in many cases only have
a few characters or even a single character for which
she would like to test directionality; it is reasonable
to assume that our model is useful also in such a
context. The reduced power can be compensated for by
increasing the number of terminals sampled; additional
simulations are needed to evaluate the required number.
In the context of character-dependent diversification
(the BiSSE model, Maddison et al. 2007), the authors
of a recent simulation study suggest using at least 300
terminals (Davis et al. 2013), but our model is less
complex than theirs and might thus be sufficiently
powerful even with a smaller sample. Sanderson (1993)
studied rate asymmetry and found that given a sufficient
evolutionary rate, as few as 32 taxa can be enough to
distinguish between evolutionary models.

Even though our model was clearly better than
the stationary model in explaining the evolution of
hymenopteran morphology, it might be possible to
improve the fit to this particular data set even further.
In particular, it would be interesting to explore the
possibility of allowing a limited number of changes
between evolutionary regimes across the tree, instead
of assuming a single regime. For instance, the poorly
sampled Apocrita represent a group that has undergone
rather dramatic changes at its base, with the shift to
a parasitic lifestyle, the appearance of a wasp waist,
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and strongly increased rates of diversification (Heraty
et al. 2011; Aguiar et al. 2013; Klopfstein et al. 2013).
One might suspect that these changes are associated
with detectable modifications in the overall process of
morphological evolution. A first step toward modeling
process heterogeneity would thus be to allow for a
separate model in this part of the tree. However, similar
shifts might of course have occurred in other parts
of the tree as well. Ideally, one would like to infer
both the number of different evolutionary regimes and
the points of change between them. In the extreme
case, such a heterogeneous model of morphological
evolution might estimate different regimes on each
branch of the tree (cf. Yang and Roberts 1995; Galtier
and Gouy 1998; Jayaswal et al. 2005), which might
lead to overparameterization. Some model component
that puts a fairly strong constraint on the number of
regimes would be advisable for typically rather scarce
morphological characters, such as a compound Poisson
process or a Dirichlet process prior (cf. Blanquart and
Lartillot 2006). Unfortunately, models like these are
often difficult to sample from efficiently using standard
Bayesian MCMC algorithms, and the statistical power is
likely to decrease rapidly with the number of postulated
evolutionary regimes. How to model the process that
changes evolutionary regimes is a critical issue in this
context.

Another interesting possibility would be to consider
dependence among discrete morphological characters.
We treated the characters as independent of each other,
which could potentially be problematic if their evolution
was in fact tightly linked, even though the effect of
such linkage among characters on the inference of
directionality is not entirely clear. If character change is
fundamentally directional, and the linkage is a simple
matter of the state of some characters affecting the
rate of change of others, then the net effect might
simply be overconfidence in the directional nature of
evolution. One could also imagine a scenario in which
atomic changes are essentially nondirectional, but the
dependence among characters creates the impression
of directionality. However, to be able to distinguish
such character-dependence scenarios from independent
directional and stationary models, we will probably need
detailed models of the nature of the potential linkage
among morphological characters. In formulating such
models, both developmental and functional links need
to be considered.

In hymenopteran wing veins, we generally observe
a reduction from the posterior to the anterior margin
of the wing and from its apex toward the base, which
could form the basis of character-dependence models.
In muscles and sclerites, there are a few cases of
potential developmental or functional constraints, for
instance in serially homologous structures such as the
meso- and metafurca, meso- and metatibial spurs, and
certain sets of muscles in the meso- and metathorax, or
in functionally linked muscle groups. Even though it
would be interesting to try and model such character-
linkage phenomena, we probably need larger data sets

(more terminals and more characters) to convincingly
demonstrate their presence. For instance, it seems likely
that the underlying developmental constraints in wing
venation (e.g., the presence of more basal veins being
necessary for the formation of a more apical vein) will
only start playing a major role once a certain number of
wing veins have been lost, which is not the case in the
relative modest range of venational complexity seen in
the taxa sampled for this study. Similarly, the observed
distributions of skeletal and musculature features
among the taxa examined here suggest that it would be
difficult to demonstrate any potential character linkages
in these systems (Vilhelmsen et al. 2010). Nevertheless,
modeling character dependence certainly has a lot
of potential, as exemplified for molecular evolution
(e.g., accounting for secondary or tertiary structure in
rRNA and proteins; Schoeniger and von Haeseler 1994;
Robinson et al. 2003). While not yet feasible for most
morphological character systems, the formulation of
more complex evolutionary models will in the future
greatly increase the rigor of phylogenetic analyses
involving character sets that violate the standard models;
further research in this area is sorely needed. Another
possible extension to our approach would be to model
the correlation between the evolution of morphological
characters and the evolutionary process itself. Using this
approach, one might for instance be able to account
for the influence of body size on the extent and speed
of evolutionary reductions in morphological character
systems. Such a framework has been presented for
quantitative characters based on multivariate Brownian
motion models (Lartillot and Poujol 2011). This type of
model remains to be extended to discrete characters, but
the Brownian framework would actually be adequate
for the study of the correlation between body size
and evolutionary transition rates, both of which are
quantitative traits. For Hymenoptera, the problem here
lies more with the data than the analysis framework: It
appears unlikely that a sample of less than 1% of the
described taxa would be sufficient to infer body size
evolution with any degree of precision.

These are just a few examples of possible extensions
to our model. Clearly, there is still much to learn from
more sophisticated probabilistic modeling and statistical
inference of morphological evolution.
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