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Abstract

Linking fossil species to the extant diversity is often a difficult task, and the correct interpreta-

tion of character evidence is crucial for assessing their taxonomic placement. Here, we

make use of geometric morphometrics of fore wings to help classify five fossil Darwin wasps

from the Early Eocene Fur Formation in Denmark into subfamilies and often tribes. We com-

pile a reference dataset with 342 fore wings of nine extant subfamilies and nine relevant fos-

sil species. Since geometric morphometrics was mostly ignored in the past in Darwin wasp

classification, the dataset is first used to examine differences and similarities in wing vena-

tion among subfamilies. In a next step, we used the reference dataset to inform the classifi-

cation of the fossil species, which resulted in the description of one new genus and five new

species, Crusopimpla weltii sp. nov., Ebriosa flava gen. et sp. nov., Entypoma? duergari sp.

nov., Lathrolestes? zlatorog sp. nov., and Triclistus bibori sp. nov., in four different subfami-

lies. Carefully assessing data quality, we show that the fore wing venation of fossil Darwin

wasps is surprisingly suitable to assign them to a subfamily or even lower taxonomic level,

especially when used in conjunction with characters from other parts of the body to narrow

down a candidate set of potential subfamilies and tribes. Our results not only demonstrate a

fast and useful approach to inform fossil classification but provide a basis for future investi-

gations into evolutionary changes in fore wings of ichneumonids. The high informativeness

of wing venation for classification furthermore could be harvested for phylogenetic analyses,

which are otherwise often hampered by homoplasy in this parasitoid wasp family.

Introduction

To make use of fossils, it is important to understand their affinity to their extant relatives,

which is often a difficult but a necessary step to reconstruct past diversity patterns, their change

over time, and to identify the processes shaping them. While molecular data has become the

main source of information to reconstruct relationships among extant taxa, ancient DNA of
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fossils is limited to an age of about one million years [1, 2]. In older fossils, their morphology is

often the only information that remains.

Landmark-based geometric morphometrics is a fast and powerful method to extract mor-

phological information and evaluate biological shapes, shape variation, and size, and it is often

useful for identifying and classifying taxa. In extant insects, geometric morphometrics of

wings was more than once proven a robust method to distinguish and discriminate taxa,

mostly at population, species, or genus levels, for instance in Coleoptera [3], different Diptera

families [4–6] (e.g. Tabanidae, Calliphoridae, Culicidae), Hemiptera [7] (e.g. Psyllidae), and

Hymenoptera [8, 9] (e.g. Apidae). However, it was less extensively explored at higher taxo-

nomic levels, not to mention in fossils. Since in both amber and compression fossils, the wings

are often relatively flat and especially well preserved, geometric morphometrics offers an

important and straight-forward approach to quantify relatedness of fossil insect species to

extant taxa. And although it is a not yet widely used method, it has already been proven effi-

cient in some fossil hymenopteran groups, mainly bees [10–13], ants [14], social wasps [15],

but also parasitoid wasps [16].

We here apply geometric morphometrics on fore wings of Darwin wasps to inform about

their taxonomic placements. The Darwin wasps (Hymenoptera: Ichneumonidae) is the largest

wasp family, with over 25’000 described extant species [17]. To date, there are 303 fossil species

of Darwin wasps described, ranging in age from a few Cretaceous fossils, to the rather abun-

dant fossil record of the Late Eocene, and finally to the much younger ones of the Miocene and

Pliocene [18, 19]. Although it is relatively easy to distinguish an ichneumonid from other wasp

families, the large number of subfamilies in Ichneumonidae (42 extant and 5 fossil) compli-

cates the integration of new fossil taxa into the extant classification. Most ichneumonid sub-

families have been shown to be monophyletic in molecular studies [20, 21], but a subfamily

placement based on morphology alone is often hard, even for some extant species, since many

characters are highly homoplastic [22].

Ichneumonids have a highly conserved wing venation, which is maybe the reason why their

fore wings were used sporadically before to evaluate taxonomic affiliations with morphometric

analyses. In extant species for instance, it was applied to confirm species-groups [23], in fossils

to confirm taxonomic positions among the oldest, extinct subfamilies [24], and also more

recently to support the taxonomic placement of a fossil, where affiliation was uncertain

between two subfamilies [25]. Furthermore, a handful of subfamilies are regularly keyed out

by specific, unique characters in their fore wing [21], and several wing characters have also

proven useful in identification keys at lower taxonomic levels [20, 21]. Despite their high spe-

cies number, geometric morphometrics in wings of Darwin wasps was never applied to a larger

extent, and only included a few species so far.

For ichneumonids, the second oldest excavated formation site after the K-Pg boundary is

the Fur Formation in Denmark from the Ypresian epoch (56–54.5 mya), a marine Lagerstätte

with a great abundance of insect fossils [26, 27]. It is assumed that the insect fossils originated

from paratropical woodlands near the former southwestern Scandinavian coast [26, 28], and it

remains somewhat unclear why such an abundance of them was found in these marine sedi-

ments, but transport via storms and also long-distance migration of females were discussed

[29]. For a long time, Pimpla stigmatica Henriksen 1922 was the only described fossil ichneu-

monid from this formation. Recently, several new ichneumonids were described from Fur [25,

30] and now, including Pimpla stigmatica, there are eleven fossil species known from this for-

mation. Rust [26] included 110 specimens of ichneumonids from the Fur Formation in his

study of the biostratinomy of insects in this Lagerstätte, which highlights the high number of

these wasps at the locality. He discussed different influences and aspects of how the insects fos-

silised in general and highlights two colour morphs in ichneumonids as well as two ways in
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which they lie in the sediments. The reasons for the different position in the embedment is not

well understood, as are many other taphonomic aspects. When fossil wasps are embedded in

compressed sediments, it might be difficult to identify certain structures, due to decay and

deformation during the fossilisation process [31, 32]. Therefore, it is most likely one ends up

with several possible subfamilies to place a fossil species in, since key characters are usually

indiscernible in fossils.

We here compile an extensive reference dataset of fore wings of 342 species from nine sub-

families, including nine previously described fossil species from the Fur Formation [30], cho-

sen to match the candidate subfamilies for the placement of five new studied Fur Formation

fossils, in a similarity-based geometric morphometric approach. With this dataset, we aimed

to answer the following questions: i) How well can the extant subfamilies be evaluated from

one another? ii) With which extant subfamilies can fossil specimens be affiliated and how well

supported is this classification? iii) Is it possible to make fossil assignments at a lower taxo-

nomic level (tribe or genus)?

Materials and methods

Fossil specimens and morphological analysis

The fossil material described here was collected by Erwin Rettig and Jan Verkleij and is stored

in the Fur Museum in Nederby (FUR). No permits were required for the described study,

which complied with all relevant regulations. Photos of the newly described fossils were made

with a Keyence VHX 600 camera system with a magnification of 50–200 under ethanol (to

enhance the contrast), using stacking techniques. For each fossil, an interpretative illustration

was made in Adobe Photoshop (v. 21.2.3), using both part and counterpart of the fossil and

several photos of details as templates. The interpretative illustrations are coloured in different

grey tones according to the visible colouration of the corresponding body parts. Solid lines

indicate certain interpretation, whereas dotted lines illustrate uncertain interpretations.

The morphological terminology follows Broad et al. [21], except for the wing terminology,

which is illustrated in Fig 1A for the fore wing and follows Spasojevic et al. [33] for the hind

wing. Tergites and sternites are numbered in the text and abbreviated as “T1”, “T2”, etc. and

“S1”, “S2” etc., respectively. Measurements for the descriptions were made in ImageJ [34]. If

paratypes are available, the range of the measurements is given, and the measurement of the

holotype is provided in brackets. If both the left and right version of an appendix were com-

plete, as it often occurred in fore or hind wings, then the average over both is given in the

description. In crooked fossil specimens, the body length was measured in segments. We

made use of open nomenclature [35], which is often used in palaeontology, to communicate

uncertainties in the taxonomic placements. A question mark is added, in our case after the

subfamily or the genus, when the identification was uncertain because a key character of this

group was indiscernible.

Taxon sampling for reference dataset

We built a large reference dataset out of extant and fossil specimens and used different subsets

of it depending on the fossil species and the analysis (Table 1). For the evaluation of differences

and similarities in fore wings among extant subfamilies (question i), we used 333 standardised

illustrations from Townes [36–38]. This work comprises genus-level revisions of all ichneumo-

nid subfamilies except Ichneumoninae and Hybrizontinae, with at least one habitus plate per

genus, in which the wings are displayed in a standardised fashion. However, it does not include

size information for the particular species in the illustrations. We thus retrieved wing or body

lengths of the illustrated species from the literature using the Taxapad database [17] and used
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the mean if reported lengths varied within species (see S1 Table for specimen information).

Townes illustrations [36–38] mainly depict female specimens, with very few exceptions. From

the 42 extant subfamilies, we strategically chose nine as follows. Ctenopelmatinae, Metopiinae,

Orthocentrinae, Pimplinae and Tryphoninae were included because they resemble our newly

described fossil specimens the most and are thus viable candidates for their placement. Cam-

popleginae and Cremastinae were added because of their similarity in fore wing venation and

close phylogenetic relationship with one of the candidate subfamilies (see below). Finally,

Ophioninae and Tersilochinae were added due to the known uniqueness of their fore wing

characters [21], so we can adequately represent most of the variation found in the ichneumo-

nid fore wing. Other closely related, but small subfamilies with only a few species were not

included, nor were other subfamilies with typical body characteristics that are not found in

our fossils, such as a very long and slender first tergite or a strongly pentagonal areolet in the

fore wing. The species included from the nine chosen subfamilies are listed in S1 Table, and

Fig 1. Fore wing venation shape and landmark placement. (A) Wing vein terminology used throughout the study, shown on an idealised ichneumonid fore

wing. Vein 2m-cu marked orange; on this vein, a curve with six semilandmarks was added. (B) Placement of 21 fixed landmarks.

https://doi.org/10.1371/journal.pone.0275570.g001
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included 37 Campopleginae, 23 Cremastinae, 81 Ctenopelmatinae, 28 Metopiinae, 36 Ophio-

ninae, 22 Orthocentrinae, 52 Pimplinae, 16 Tersilochinae, and 38 Tryphoninae species.

For the questions of classification of our new fossil specimens (questions ii & iii), we pre-

selected candidate subfamilies based on body characteristics from the set of five potential can-

didates (Ctenopelmatinae, Metopiinae, Orthocentrinae, Pimplinae and Tryphoninae)

(Table 1). For Triclistus bibori sp. nov., we ended up with a single choice (i.e., Metopiinae)

based on body characteristics (for details, see taxonomic section on this species). In order to

still evaluate the power of our approach for placing fossils in a subfamily, we here included two

related subfamilies which have a very similar fore wing venation (Campopleginae & Ctenopel-

matinae). In Crusopimpla weltii sp. nov. and Entypoma? duergari sp. nov., Pimplinae was

among the candidate subfamilies for placement. In addition to the extant taxa, we there also

added nine previously described fossil species from the Fur Formation (S1 Table), all of which

belong to this subfamily [30] (in the tenth known species from Fur, the specimen’ fore wings

were too distorted to be used in geometric morphometrics).

Landmarks for geometric morphometrics

To obtain shape information of the fore wing venation, we placed 21 fixed landmarks (LM)

and one curve with six semilandmarks along vein 2m-cu (Fig 1B) on each digital image using

the softwares tpsUtil (v. 1.78, [39]) and tpsDig2 (v. 2.31, [40]). The semilandmarks were

Table 1. An overview of the datasets and analyses.

Question—analysis Taxa Removed LM

Data quality assessment 1 Campopleginae (N = 27) Semilandmarks

Data quality assessment 2 Campopleginae (N = 14) LM1 + Semilandmarks

Data quality assessment 3 The five new fossils (FUR #11550, FUR #11112, #11264, FUR #10651,

FUR #13809)

LM 1, 2, 18, 19

i Procrustes distances 333 extant (nine subfamilies) Semilandmarks

i Shape vs. size 333 extant (nine subfamilies) Semilandmarks

i CVA 333 extant (nine subfamilies) none

CVA reduced 281 extant (seven subfamilies) none

ii PCA with all fossils 281 extant (seven subfamilies), nine fossils Pimplinae, five new fossils none

ii PCA and CVA for each fossil Information for each fossil below (grey) Information for each fossil below

ii classification Crusopimpla weltii sp. nov. (holotype,

FUR #11550)

Ctenopelmatinae, Pimplinae (including fossil Fur Pimplinae),

Tryphoninae

LM 1 + 18

ii classification Ebriosa flava gen. et sp. nov. (holotype,

FUR #11112)

Ctenopelmatinae, Tryphoninae LM 1, 2 +18

ii classification Entypoma? duergari sp. nov. (holotype,

FUR #11264)

Orthocentrinae, Pimplinae (including fossil Fur Pimplinae),

Tryphoninae

LM 1

ii classification Lathrolestes? zlatorog sp. nov. (holotype,

FUR #10651)

Ctenopelmatinae, Tryphoninae LM 1 + 19

ii classification Triclistus bibori sp. nov (holotype, FUR

#13809)

Metopiinae, Campopleginae, Ctenopelmatinae lM 1, 18 + 19

ii classification Triclistus bibori sp. nov (paratype, FUR

#11215)

Metopiinae, Campopleginae, Ctenopelmatinae LM 1

ii classification Triclistus bibori sp. nov (paratype, FUR

#13077)

Metopiinae, Campopleginae, Ctenopelmatinae LM 1

iii between-group PCA Information for each fossil above (grey) Information for each fossil above

(grey)

Fossil specimens with candidate subfamilies and the excluded landmarks for each of the fossil specimen and analysis (in grey). When semilandmarks were removed (LM

22–27), the curve shape of 2m-cu was excluded.

https://doi.org/10.1371/journal.pone.0275570.t001
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chosen because the shape of 2m-cu has been mentioned previously as potentially informative

for ichneumonid higher classification [21, 30]. Size information was included by setting the

scale manually for each specimen. Landmarks were placed on the left fore wing in each illus-

trated extant taxon. In each fossil, there is at least one landmark that was placed with some

uncertainty due to incomplete preservation or difficulties in the interpretation of the wings

(Table 1). In all fossil wing analyses and corresponding other analyses, we excluded these

uncertain landmark(s) for each fossil specimen.

Despite evidence for sexual dimorphism in wings in some ichneumonids [41, 42], we did

not consider it in our study. Nearly all specimens in our reference dataset were female, and in

fossils, the sex can only be clearly determined if there is a visible ovipositor or well-preserved

male genital. In the case of Ebriosa flava gen. et sp. nov., Triclistus bibori sp. nov., and Lathro-
lestes? zlatorog sp. nov., no ovipositor is visible, leading to the assumption that they are male

specimens. Rust [26] observed in 83 complete ichneumonid specimens from the Fur Forma-

tion only 17 individuals without ovipositor, identifying only one of them as a male for sure. So,

the possibility remains that our fossils might be female, with a short or not well-preserved ovi-

positor, but if sexual dimorphism is present, a bias in our inferred affiliations cannot be ruled

out.

Data quality assessment

As using geometric morphometrics to place fossils is a rather rarely used approach, we con-

ducted three kinds of data quality assessments. In all three assessments, we tested for a poten-

tial bias using a Procrustes analysis with the function gpagen, followed by a Procrustes

ANOVA with the function procD.lm from geomorph (vers 4.0.4, [43]) in RStudio (ver.

1.2.5041, [44] R ver. 4.0.2, [45]). Additionally, the shape data was projected in morphospace

with a Principal Component Analysis (PCA) to visually identify any potential biases.

First, we checked for biases regarding landmark placement by two different persons with a

subset of our extant dataset (Table 1), i.e., 27 genera of the subfamily Campopleginae, with all

21 landmarks placed on the illustrations in Townes [37]. Second, we examined possible bias

when using standardised drawings of wings in comparison with photos, again using a Campo-

pleginae subset (Table 1). A bias might occur because it is not entirely clear how the illustra-

tions in Townes [36–38, 46] were produced, although it appears that the wings were removed

from the specimens, flattened and glued on cardboard in the majority if not all cases (D. Wahl,

curator of Townes collection at Utah State University, Logan, pers. commun.). To make sure

that the Townes illustrations can be used for our purpose, we prepared the fore wings of 14

species from the illustrations for which we also had fresh material available (see S2 Table for

taxon sampling list). In the PCA we included the species that were available as photo and as

illustration, as well as an additional different but congeneric species for many of them.

Third, we aimed to identify potential biases due to preservation artefacts in fossils. The left

and right fore wing (right ones being mirrored), and part and counterpart in each fossil were

tested for significant shape variation, using the same approach as outlined above. This compar-

ison included the five fossils studied here, although alternative taxon samplings would be con-

ceivable, but would rely on making a priori decisions about their final placement. Since in each

fossil, there was at least one landmark with an uncertain placement, we removed LM 1, 2, 18

and 19 in all our fossil data in this analysis.

Examining informativeness of fore wings for subfamily classification

We wanted to evaluate to what extent the shape of fore wings is influenced by subfamily affilia-

tion and/or size. For this, we used the 21 fixed LM of the extant species, performed a
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Procrustes analysis and calculated centroid sizes with the geomorph package [43]. To deter-

mine the allometric trends across subfamilies, a Procrustes ANOVA was implemented with

the function procD.lm. A regression analysis based on the PC scores and the centroid sizes was

then performed to test the shape and size correlation using MorphoJ [47]. Since there may be a

link between the centroid size and the subfamily attribution (tested with a Procrustes

ANOVA), we performed a pooled within-group regression. In the pooled analysis, the cen-

troid size distribution within a predefined group (here the subfamilies) is centred to the mean

of the centroid size of the groups (the mean centroid size value equals to 0) preserving the rela-

tive range of centroid size but deleting the impact of the group on the shape changes. A regres-

sion is then performed using the new centroid size configuration.

In a next step, we checked which subfamilies exhibit similar LM configuration of the wing

venation and to what extent the fore wing shape venation varies within each subfamily. After

minimising the distances between the LM of all extant species with a Procrustes analysis, the

meanshape was calculated using the function mshape from the package geomorph [43] and

the full Procrustes distances were calculated in a pairwise manner using the function procdist

from the package shapes (vers. 1.2.5 [48]). We filtered the Procrustes distances, so we could

calculate the mean Procrustes distance of each subfamily to another subfamily and compare

the shape variation among them. The Procrustes variances per subfamily were calculated with

morphol.disparity from geomorph [43].

We further analysed the shape variation of the extant taxa in a Canonical Variates Analysis

(CVA) with the R package Morpho (vers. 2.9, [49]) to view the maximised amount of among-

group variance, relative to within-group variance [50]. The CVA additionally computes a

cross-validation test to analyse which subfamilies can be statistically differentiated from one

another based on the LM configuration of the wing venation.

Fossil placement

From here, we worked with the candidate subfamilies that resemble our new fossil specimens,

removing the LM that were placed with uncertainty in the respective fossil (Table 1). For a first

general visualisation, we plotted our complete reference dataset, together with all fossil speci-

mens in a PCA. The PCA is then repeated for each fossil specimen and its candidate

subfamily.

To evaluate the affiliation of the fossils we performed a cross-validated CVA with the candi-

date subfamilies of each new fossil (Table 1), but not yet including the fossil itself, to check

how well the taxonomic groups can be distinguished by LM configuration of the fore wing

venation alone. The CVA results in an overall classification accuracy, including Kappa statis-

tics (to which extent the collected data correctly represents the measured variables, ranging

from -1, where the data is representing the variables worse than random, to +1, which is a per-

fect agreement of data and measured variables [51]. This helps to estimate the certainty when a

fossil is later placed within a subfamily.

In a next step, we tested the affiliation of each fossil with the function ‘classify’ from the

package Morpho [49], using the result of the conducted CVAs. This allows us to use the refer-

ence dataset as a test dataset and define the fossil specimens as new input to be assigned to a

predefined taxonomic group, in our case subfamilies. If the CVA resulted in a high classifica-

tion accuracy of>80% (supported by a high Kappa value of>0.7) and the fossil specimen

could then be assigned to a given subfamily with a high posterior probability (pp>0.9), we

used this subfamily for a narrower evaluation to tribe level or to genus group with the function

groupPCA from Morpho. To do a between-group PCA (bgPCA) is compatible in this situa-

tion, since a CVA is not feasible with small sample sizes [52], as we sometimes only had a few
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species available per tribe or genus. The function groupPCA calculates Euclidean distances

between the tribes’ averages with the fossil specimen remaining in its own group. P-values are

based on permutation testing of 10’000 replications. Resemblance of the fossil specimens with

extant tribes is discussed by evaluating the Euclidean distances in the descriptions of the new

fossil species.

Results

Data quality assessments

The results of the quality assessments are shown in S2 Table. In brief, we found no indication

of any systematic biases in any of the three quality assessment analyses. Furthermore, the varia-

tion introduced by different persons setting the landmarks, by using drawings versus photo-

graphs of fore wings, and by fossilisation artefacts was in nearly all cases smaller than the

variation between genera, suggesting that the method is suitable for higher-level classification.

Landmark placing by two persons

Our assessment showed that the placement of landmarks on fore wings by two different per-

sons is highly consistent, assuming they followed the same rules of placement. The variation in

shape explained by different persons is very low and there seems to be no significant difference

between them (R2: 0.8%, p = 0.8), according to a Procrustes ANOVA analysis (S2 Table).

Indeed, the two replicates based on the same illustration, but with landmarks placed by differ-

ent people, cluster very closely together in all cases on a PCA plot (Fig 2A, blue and yellow dot

within each green triangle).

Photos versus illustrations

When comparing photos (black dots, Fig 2A) with illustrations (blue and yellow dots, Fig 2A)

of the same species (green triangles, Fig 2A), the shape data was very similar within species,

and was nearly always smaller compared to the distances between genera (Fig 2A, S1 File). The

variation of shape is only little explained by the use of either photo or illustration (R2: 9%,

p = 0.5), but mostly by species (R2: 88.2%, p = 0.5) (S2 Table). And even when different species

within a genus were sampled (grey triangles, Fig 2A), they were usually clustering closely

together compared to the overall shape variation within the subfamily. Only some of the largest

genera of the subfamily, such as Dusona Cameron, 1901, Hyposoter Förster, 1869 and Bathy-
plectes Förster, 1869, exhibited a rather larger distance among different species, which at times

exceeded that between some of the smaller genera. These genera are known for their rather

high intrageneric diversity and might in fact turn out as not monophyletic in the future [53].

The similarity of the fore wing venation shape pointed out that many species could be correctly

put into their genus, no matter if a photo was used or an illustration.

Fossilisation artefacts

Fossil specimens can show various artefacts, especially distortions resulting from the fossilisa-

tion process, which might not always be obvious but could nevertheless hamper geometric

morphometric analyses. In our assessment with the fossil fore wings, we found the variation

within specimen explained by side (left and right fore wing, R2: 0.8%, p = 0.25) and part (part

and counterpart, R2: 0.5%, p = 0.57) rather minor: Left and right, as well as part and counter-

part of the fore wings do not differ much within each fossil specimen (Fig 2B, S2 Table). We

thus decided to continue with only the best-preserved imprint of the fore wing in the fossil

specimens.
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Allometry in Darwin wasp wings

The analysis of shape changes in wing venation related to size shows extremely significant cor-

relation and thus strong signal for allometry (ANOVA: 21.9%, p< 0.001; regression: 21.9%

predicted, p< 0.001, Table 2 & S4 Table). While small wings possess an enlarged pterostigma

and a generally broader fore wing, larger ones have a slender pterostigma and are narrower in

the anterior-posterior axis, and stand out in having the LM 11 and LM 15 very close together,

Fig 2. Data quality assessments. (A) PCA plot with landmarks placed by two different persons and comparison of illustrations and photos. Green triangles show the data

of the same species three times, twice from an illustration, measured by two different persons, and once from a photo. Grey triangles represent species from the same

genus, one species measured by two persons from an illustration and a photo of a different species, in order to additionally show some of the intra-generic variation. In

those cases where our taxon sampling allowed it (Dusona, Rhimphoctona, etc.), both aspects were combined. The genus ID in the figure is composed of the first three

letters of the genus (Dia–Diadegma) and the abbreviations, as well as the included taxa are listed in S2 Table. (B) Data quality assessment in fossils. PCA showing shape

variation within and among the five newly described fossil species, “m” is representing the part (main part) and “c” the counterpart of the fossils, whereas the black outline

is marking the right fore wings, the ones without black outlines the left fore wings.

https://doi.org/10.1371/journal.pone.0275570.g002
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and the 2cu-a longer than 3Cu (Fig 3A). Nevertheless, it is worth noting that the centroid size

within the nine different subfamilies is not random. Tersilochinae and Orthocentrinae are the

smallest studied ichneumonids here, while the Ophioninae are the largest ones. Indeed, shape

changes associated with both, centroid size and subfamily affiliation, are extremely significant

(ANOVA: 6.6%, p< 0.001). Moreover, the allometric trajectories are not similar across sub-

families (Fig 3). Then working on residuals of the regression of this analysis would delete

shape information related to phylogeny. So it is necessary to pool the data by subfamily. When

pooling the data by subfamily, shape changes in wing venation related to size showed an

extremely significant correlation with a strong signal for allometry (Regression: 12.1% pre-

dicted, p< 0.001, S4 Table). Thus 9.8% of the shape changes may be related to both the sub-

families and the centroid size when considering the results of the regression. Relatively smaller

wings are here characterised by broader cells, especially the cells 2R1 and 3Rs, while the larger

ones are narrower, causing the cells 2R1, 1M+1R1, 2M and 2Cu to be elongated (Fig 3B). It is

interesting to note that the shape differences in the maximum extreme shape between the

unpooled and pooled analysis (Fig 3) are related to subfamily affiliation. Indeed, the characters

observed in the unpooled analysis, like the 2m-cu being very close to vein 2-Rs+M, the vein

3Cu being shorter than vein 2cu-a, and the very long vein 1-R1 that almost reaches the height

of LM 20, are absent or reduced from the pooled one and are typical for the subfamily

Ophioninae.

Shape variation among and within subfamilies

When comparing the mean Procrustes distances between the subfamilies, Tryphoninae, Cteno-

pelmatinae, and Campopleginae are the subfamilies that have the most similar fore wing venation

to one another (Fig 4). Tersilochinae show the most distinct mean wing venation compared to

others and are the most distinct from Metopiinae, Pimplinae, and Ophioninae (Fig 4).

The highest mean of Procrustes distances of pairs within subfamilies is reached by Metopii-

nae and Cremastinae (Fig 4, horizontal lines). The mean within those two subfamilies is higher

than in many among-subfamily distances, while the mean within-subfamilies is rather consis-

tent otherwise (S3 Table). And although the mean of Procrustes distances within-subfamily is

not exactly the same as Procrustes variance, the results are very similar with the highest Pro-

crustes variance found in Metopiinae (0.01089), closely followed by Cremastinae (0.0173) (S3

Table). Lowest Procrustes variance, and therefore the most consistent fore wing shape is found

in Tersilochinae (0.00445) and Campopleginae (0.00482).

Shape variation related to subfamily

The shape changes accounting the subfamily affiliation are high with 25.8% (p< 0.001,

Table 2). The classification results based on the pooled data and the raw data (S4 Table) are

Table 2. Result of the procrustes ANOVA of shape with centroid size and subfamily affiliation.

DF SS MS R2 F Pr(<F)

Csize 1 0.8234 0.82339 0.21936 151.2830 0.001

Subfamily 8 0.9684 0.12106 0.25800 22.2419 0.001

Csize:Subfamily 8 0.2474 0.03092 0.06590 5.6811 0.001

Residuals 315 1.7145 0.00544 0.45674

Total 332 3.7537

Abbreviations: DF: degree of freedom, SS: sum of squares, MS: mean sum of squares, Z: effect sizes, analysis was done using 1000 permutations.

https://doi.org/10.1371/journal.pone.0275570.t002
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equally extremely efficient (0.3% of reclassification differences). Thus, in order to simplify the

process of producing our results, we will perform our analyses only using the raw data. We

conducted a cross-validated CVA of the reference taxa (Table 3A), where each individual was

tested against the remaining individuals grouped in subfamilies, resulting in an overall classifi-

cation accuracy of 87.9%. Ophioninae species were 100% assigned correctly, followed by over

90% correctly classified Campopleginae, Tersilochinae and Pimplinae. The subfamily Trypho-

ninae was the one with the fewest correct assignments. Over 20% of the Tryphoninae were

falsely placed in Ctenopelmatinae, but only around 5% of Ctenopelmatinae were wrongly

placed within Tryphoninae. Because about 60% (CV1 and CV2) of the shape variation split

mainly Ophioninae and Tersilochinae (S1 Fig), and none of them represents a possible target

subfamily of the later tested fossil specimens, we repeated the CVA without those two subfami-

lies (Table 3B, Fig 5).

Without Ophioninae and Tersilochinae, the CV1 (38.1% explained variance) separates

almost all Pimplinae and Orthocentrinae, the two subfamilies of Pimpliformes in our dataset,

from the other groups, which all belong to Ophioniformes. There is some overlap though with

some Tryphoninae, which is probably the sister group of the other ophioniform subfamilies.

Pimplinae and Orthocentrinae can be distinguished from the other subfamilies mainly by an

evenly outwards-bowed 2m-cu vein and the length of vein 4Cu being longer as vein 5Cu (Fig

5A). Regarding CV1, species of Cremastinae for example represent the opposite shape of Pim-

plinae and Orthocentrinae, where vein 4Cu is shorter than vein 5Cu, and the 2m-cu is bowed

inwards. Along CV2, 26.6% of the variation is captured, and it represents the width of the fore

wing to some extent, again the curve of the 2m-cu vein, and areolet size and shape (Fig 5A).

Most Metopiinae split here from the rest by having a very slender wing shape in the anterior-

posterior axis, a small and slender pterostigma, narrowed cells and the 2m-cu vein slightly

Fig 3. Correlation of the centroid size and the wing shape in ichneumonid subfamilies. (A) Regression analysis based on the raw data, where centroid size is plotted

against the regression score, with linear regressions slopes shown by subfamily. (B) Centroid size against regression score pooled by subfamilies, with the centroid size

distribution of each subfamily centred with its mean on zero. The black wings at the bottom of each plot represent shape at low and high centroid size and centroid size

range, respectively. The underlying grey wing represents the mean shape of all taxa.

https://doi.org/10.1371/journal.pone.0275570.g003
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inward bowed and sinuous. Metopiinae also have vein 3Cu longer than vein 2cu-a and species

in the genus Metopius possess a relatively large areolet (Fig 5). In CV3 (15.2% explained vari-

ance), all Cremastinae except Belesica pictipennis Tosquinet, 1896 split from the other subfami-

lies, mainly due to the straight and interstitial placement of vein 1cu-a to 1M + 1Rs, where 1Cu

is very short or absent (also visible in the mean shape in Fig 6), and a slightly more elongate

overall fore wing. In CV4, the Orthocentrinae also mostly group separately, overlapping some

Ctenopelmatinae. The wing venation separates Orthocentrinae by having shorter 2R1 and 2Cu

cells, a broader pterostigma and 3Cu about the same length as 2cu-a. CV5 (7.7% explained var-

iance) separates Campopleginae from many other taxa, due to their relatively short 2Cu cell, a

longer 3Cu cell, as well as the anteriorly inwards bowed 2m-cu vein (S2 Fig). CV6 (4.2%

explained variance) shows a slight shape difference in some Tryphoninae that have a slightly

wider fore wing, resulting in some broader 2M, 3M, and 2R1 cells (S2 Fig). Other than that,

taxa in Tryphoninae seem difficult to separate entirely from taxa of Ctenopelmatinae in the

CVA or the comparison of their mean shapes (Fig 6).

Subfamily placement of the newly described fossil species

The plots of PC1 against PC2 (Fig 7) of the candidate subfamilies and the new fossil specimens

show first tendencies of subfamily affiliation. Some specimens grouped better within a

Fig 4. Means of Procrustes distances between species pairs among and within subfamilies. The means of the pairwise Procrustes distances for members of each

subfamily pair are given in the left portion of the graph, sorted in ascending order. Whiskers indicate the standard error for each subfamily pair. On the right, the mean

intra-subfamily pairwise distances are shown as barplots, with dashed lines extending to the left portion of the graph to allow direct comparison of mean intra- and inter-

subfamily distances. The smallest distance between subfamiles is observed between Tryphoninae and Ctenopelmatinae and is lower than the three largest observed intra-

subfamilial distances (Ophioninae, Cremastinae and Metopiinae). The largest distance is the one between Ophioninae and Tersilochinae and is about twice as high as the

distances within Ophioninae. Horizontal lines and abbreviations of subfamilies are coloured according to the colour code above.

https://doi.org/10.1371/journal.pone.0275570.g004
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subfamily e.g. Crusopimpla weltii sp. nov. in Pimplinae (Fig 7B), while others grouped less

explicitly, e.g. Lathrolestes? zlatorog sp. nov. (Fig 7E) in between Ctenopelmatinae and

Tryphoninae.

The candidate subfamilies are tested in a separate CVA analysis without the fossil to see

how often their members are assigned correctly in the given comparison (Table 4, light grey).

Subsequently, the fossil specimen is added and assigned to an extant subfamily (Table 4, dark

grey), showing the posterior probability for each candidate subfamily. In Crusopimpla weltii
sp. nov. (FUR #11550) and Entypoma? duergari sp. nov. (FUR # 11264) the classification result

of the CVA and the posterior probability of the fossil classification were considered clear

enough (classification accuracy of CVA >80%, Kappa value>0.7, posterior classification

>0.9), to continue the bgPCA with narrower groups of the resulting subfamily, Pimplinae in

the former, Orthocentrinae in the latter case. In Ebriosa flava gen. et sp. nov. (FUR #11112)

and Lathrolestes? zlatorog sp. nov. (FUR #10651), where the two very similarly looking subfam-

ilies Ctenopelmatinae and Tryphoninae were considered candidate subfamilies, the classifica-

tion results are less clear and for both those fossil specimens the bgPCA was conducted with

tribes of both candidate subfamilies. An additional argument for testing both candidate sub-

families in Ebriosa flava gen. et sp. nov. (FUR #11112) is that the resulting classification dis-

agreed with the fore wing characteristics of two bullae in vein 2m-cu, which is not caught in

the geometric morphometrics analysis. The specimen of Triclistus bibori sp. nov. (FUR

#13809), who had three uncertain and therefore removed LM (Table 1), was classified as Cte-

nopelmatinae (Table 4). In cell 2Cu, also represented by the here missing LM 18 and LM 19,

differences are visible between the mean shapes of Ctenopelmatinae and Metopiinae (Fig 6),

so we additionally included two nicely preserved paratypes in the classification analyses, where

only LM 1 was uncertainly placed (Table 1). Both those paratypes (FUR #11215 and FUR

Table 3. Cross-validated classification results in % from their CV scores.

A) Subfamilies Campopleginae Cremastinae Ctenopelmatinae Metopiinae Ophioninae Orthocentrinae Pimplinae Tersilochinae Tryphoninae

Campopleginae 94.59 5.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cremastinae 0.00 82.6 8.70 0.00 4.35 4.35 0.00 0.00 0.00

Ctenopelmatinae 4.94 0.00 87.65 0.00 0.00 2.47 0.00 0.00 4.94

Metopiinae 7.14 0.00 0.00 89.29 0.00 0.00 0.00 0.00 3.57

Ophioninae 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00

Orthocentrinae 0.00 0.00 0.00 4.55 0.00 81.82 4.55 0.00 9.09

Pimplinae 0.00 0.00 0.00 0.00 0.00 3.85 90.38 0.00 5.77

Tersilochinae 0.00 6.25 0.00 0.00 0.00 0.00 0.00 93.75 0.00

Tryphoninae 0.00 2.63 21.05 0.00 0.00 0.00 5.26 0.00 71.05

Overall classification accuracy: 87.98% (Kappa statistic: 0.86)

B) Subfamilies Campopleginae Cremastinae Ctenopelmatinae Metopiinae Orthocentrinae Pimplinae Tryphoninae

Campopleginae 91.89 0.00 2.70 0.00 5.41 0.00 0.00

Cremastinae 0.00 86.96 8.70 0.00 0.00 4.35 0.00

Ctenopelmatinae 3.70 2.47 85.19 0.00 2.47 0.00 6.17

Metopiinae 3.57 0.00 0.00 89.29 0.00 0.00 7.14

Orthocentrinae 0.00 0.00 0.00 4.55 72.73 13.64 9.09

Pimplinae 0.00 0.00 1.92 0.00 3.85 86.5 7.69

Tryphoninae 0.00 2.63 26.32 0.00 0.00 5.26 65.79

Overall classification accuracy: 83.3% (Kappa statistic: 0.79)

(A) Results of CVA using nine subfamilies, including all landmarks. (B) Results of CVA using seven subfamilies, including all landmarks. The correct reclassification per

subfamily is marked in grey in both analyses.

https://doi.org/10.1371/journal.pone.0275570.t003
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Fig 5. Canonical variation analysis with seven extant subfamilies. Examples of the shape at the maximum and minimum of the first four canonical axes. (A) Plot of the

first two CV axes.Metopius Panzer, 1806 species are marked with a black contour. (B) Plot of the third and fourth CV axis. If subfamilies are more or less separate from

others, we coloured the max/min shape of the wing accordingly. Grey wing outlines represent the general shape if several subfamilies overlap. The outlines on the wing

illustrations are interpretative and oriented on the specimen that has the minimum/maximum CV score on the respective axis.

https://doi.org/10.1371/journal.pone.0275570.g005
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#13809) were classified as Metopiinae (Table 4). For Triclistus bibori sp. nov. we therefore used

first, tribes of all candidate subfamilies (genus Metopius and other Metopiinae split) and sec-

ond, all genera of Metopiinae in the bgPCA, since there are no defined tribes. The resemblance

of the fossil species fore wing venation, according to the Euclidean distances of the groups

averages from the bgPCA, are included in the fossil species descriptions below.

Systematic palaeontology

Hymenoptera Linnaeus, 1758

Ichneumonidae Latreille, 1802

Pimplinae Wesmael, 1844

Crusopimpla Kopylov, Spasojevic & Klopfstein, 2018

Crusopimpla weltii Viertler, Spasojevic & Klopfstein, sp. nov. (Fig 8)

urn:lsid:zoobank.org:act:3F7CFB00-9C3F-4F0B-91D4-154A2D2B3612

Etymology. This species is named in honour of A. Viertler’s dear friend A. Welti, who is

an enthusiastic scientist and shares her passion about nature in all its facets.

Material. Holotype: female (FUR #11550). Denmark, county: Morsø Kommune, locality:

Lynghøj. Fur Formation, Ypresian epoch (56–54.5 mya). Leg: Verkleij, Jan.

Type preservation. Holotype in dorso-lateral view. Antenna only partially preserved.

Mesosoma with several details visible. Fore- and hind wings almost complete. Hind legs par-

tially visible. Metasoma partially preserved. Traces of female genitalia visible.

Systematic placement. Based on the robust body, the fore wing venation with the evenly

curved 2m-cu and two bullae evenly spread on the vein, and the stout first tergite, this species

resembles Pimplinae the most, but also Ctenopelmatinae and Tryphoninae cannot be ruled

out entirely as possible subfamilies. The length of the ovipositor unfortunately cannot be mea-

sured, which might have helped distinguish between them.

The geometric morphometrics analysis clearly classifies the fossil as Pimplinae, placing it

closest to Crusopimpla, followed by the tribe Ephialtini in the between-group PCA. The speci-

mens fore wing matches the mean shape of extant Pimplinae (Fig 6) by the outwards bowed

2m-cu, the 1cu-a interstitial to 1M + 1Rs and the 4Cu longer than vein 5Cu. The Euclidean dis-

tances of the bgPCA shows that the fore wing venation of Crusopimpla, including C. weltii sp.

nov. differs from extant tribes, but is most similar to Ephialtini.

Within Pimplinae, the vein 1Cu in the hind wing being longer than cu-a suggests Crusopim-
pla and Scambus Hartig, 1838, the latter belonging to Ephialtini, while the former is a genus

only known from fossils and not placed in a recent tribe. Scambus species never have deep

notauli as in this fossil and have a much shorter T1. The colouration, a darker head and meso-

soma, and the orange metasoma and legs, support an affiliation to Crusopimpla. Nevertheless,

one of the main characteristics of Crusopimpla, the fully carinated propodeum, is not clearly

visible in this fossil, which might be an artefact of preservation.

Diagnosis. Seven species of Crusopimpla have previously been described, five of which

from the Fur Formation. C. weltii sp. nov. differs from almost all other Crusopimpla by its

orange mesosoma. In C. tadushiensis Kopylov, Spasojevic & Klopfstein, 2018 the colouration is

not visible, but the clearly shorter tergites are. With the bright colouration of the mesosoma,

Fig 6. Fore wing mean shapes of subfamilies and fore wings of the five new fossil species. Mean shapes of all nine subfamilies,

where Metopiinae were split into two groups: the genus Metopius with a very distinct fore wing venation, and the rest of

Metopiinae. The mean shape of areolets are represented open (eg. Tersilochinae) or closed (eg. Campopleginae) based on the

majority of included species. Group specific venation shapes are coloured in the subfamily colour code when mentioned in the

results or discussion. Names of the new fossil specimens are underlined with the colour of the respective subfamily they were

placed in.

https://doi.org/10.1371/journal.pone.0275570.g006
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Fig 7. PCA analyses of fore wing shape including extant and fossil taxa. (A) PC1 against PC2 of seven subfamilies, including fossil Pimplinae and the newly described

fossils. All 21 fixed and six semilandmarks were used, and the landmarks that were missing in the fossil specimens were estimated here. (B–F) PC1 and PC2 of the fossil

species together with their candidate subfamilies. Landmarks of the reference subfamilies were adjusted to fit the respective fossil specimen (Table 1).

https://doi.org/10.1371/journal.pone.0275570.g007
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this fossil also differs from the four fossil Scambus species, which have a dark brown or black

mesosoma. Crusopimpla weltii sp. nov. combines dark antennae, fore wings with a large areolet

and slender pterostigma, an interstitial 1cu-a to 1M + 1Rs, and an inclivous 1Cu vein on the

hind wing, a unique combination among fossil as well as extant Pimplinae.

Description. Body 10.6 mm. Head, including antennae and mesoscutum dark brown or

black. Rest of mesosoma bright orange. Fore wing venation and T1 brownish. Hind legs and

rest of metasoma orange.

Head. Dimensions unclear. Antenna incomplete with only few basal segments visible; scape

clearly longer than pedicel; first flagellomere about 3.7x as long as wide. Occipital carina

appears dorsally complete.

Table 4. Cross-validated classification results and probabilities of the fossil assignment for classification.

Crusopimpla weltii sp. nov.

Ctenopelmatinae Pimplinae Tryphoninae Analysis

Ctenopelmatinae 88.8 0 11.1 CVA reference

Pimplinae 1.6 90.2 8.2 CVA reference

Tryphoninae 31.6 5.3 63.2 CVA reference

Overall classification accuracy: 83.9%, Kappa statistic: 0.746

Fossil Holotype C. weltii sp. nov. (FUR #11550) (posterior probability) <0.001 0.99 <0.001 Classification

Ebriosa flava gen. et sp. nov.

Ctenopelmatinae Tryphoninae Analysis

Ctenopelmatinae 86.4 13.6 CVA reference

Tryphoninae 31.6 68.4 CVA reference

Overall classification accuracy: 80.77%, Kappa statistic: 0.55

Fossil Holotype E. flava gen. et sp. nov. (FUR #11112) (posterior probability) 1 0 Classification

Entypoma? duergari sp. nov.

Orthocentrinae Pimplinae Tryphoninae Analysis

Orthocentrinae 72.7 22.7 4.5 CVA reference

Pimplinae 1.6 90.2 11.5 CVA reference

Tryphoninae 7.9 10.5 81.6 CVA reference

Overall classification accuracy: 84.3%, Kappa statistic: 0.74

Fossil Holotype E.? duergari sp. nov. (FUR #11264) (posterior probability) 0.87 0.13 0 Classification

Lathrolestes? zlatorog sp. nov.

Ctenopelmatinae Tryphoninae Analysis

Ctenopelmatinae 80.2 19.8 CVA reference

Tryphoninae 34.2 65.8 CVA reference

Overall classification accuracy: 75.6%, Kappa statistic: 0.45

Fossil Holotype L.? zlatorog sp. nov. (FUR #10651) (posterior probability) 0.32 0.68 Classification

Triclistus bibori sp. nov.

Campopleginae Ctenopelmatinae Metopiinae Analysis

Campopleginae 91.8 8.1 0 CVA reference

Ctenopelmatinae 4.9 95 0 CVA reference

Metopiinae 7.1 3.5 89.3 CVA reference

Overall classification accuracy: 93.28%, Kappa statistic: 0.88

Fossil Holotype T. bibori sp. nov. (FUR #13809) (posterior probability) 0.09 0.91 <0.001 Classification

Fossil Paratype 1 T. bibori sp. nov. (FUR #11215) (posterior probability) 0.008 0.09 0.90 Classification

Fossil Paratype 2 T. bibori sp. nov. (FUR #13077) (posterior probability) 0.007 0.001 0.99 Classification

The uncertain LM were removed for each specimen (Table 1) before the CVA was conducted. CVA classification results are in % and are coloured in light grey,

classification results are coloured in dark grey.

https://doi.org/10.1371/journal.pone.0275570.t004
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Mesosoma. Mesoscutum with rather deep and slightly converging notauli; surface appar-

ently smooth. Propodeum about as long as high; with complete pleural carina; traces of lateral

longitudinal carina visible. Hind leg rather slender; hind coxa slightly longer than deep; hind

femur about 4.6x as long as wide but might be longer; tibia shape unclear.

Wings. Fore wing 8.1 mm. Areolet closed, quadrate oblique with short 4M; 3rs-m similar in

length to 2+3M; 2Rs half as long as 3rs-m. 2m-cu evenly curved outwards with two bullae cov-

ering about 27% of whole 2m-cu length. 4Cu 2.9x 5Cu. 4Rs almost straight. Ramulus absent.

1cu-a interstitial to 1M + 1Rs, with 1cu-a emerging at a right angle. Pterostigma 3x as long as

wide. Cell 2R1 3.3x as long as wide. 5M seems tubular. 2Cu 0.8x 1M + 1Rs and about as long as

r-rs. 1m-cu&2-Rs+M bowed. 3Cu about same length as 2cu-a. Hind wing with 1Cu 3x cu-a.

1Rs longer than rs-m.

Metasoma. Shape difficult to interpret. T1 stout, with spiracle anteriorly to middle. Latero-

median carinae on more than half the length of T1, more or less parallel. Following tergites

appear shorter than wide. Base of ovipositor and its sheaths present, length unclear.

Ctenopelmatinae? Förster, 1869

Ebriosa Viertler, Spasojevic & Klopfstein, gen. nov. (feminine)

urn:lsid:zoobank.org:act:9902673E-94BD-4A09-BEB1-B2BF73F09E3D

Etymology. Derived from the Latin “ebriosus”, meaning drunkard. Alludes to the

extremely curved M&RS vein on the fore wings, which is straight or only slightly curved in all

other known ichneumonids.

Type species. Ebriosa flava gen. et sp. nov.

Systematic placement. The quadrate-oblique areolet and shape of T1, in combination

with a dorsoventrally depressed and drop-shaped metasoma suggests Tryphoninae or Cteno-

pelmatinae. The two bullae in 2m-cu point to Tryphoninae, since Ctenopelmatinae often have

only one, but this is not always the case. Distinct body characteristics usually used to distin-

guish these two subfamilies are either not visible or not preserved in this fossil: Tryphoninae

Fig 8. Holotype of Crusopimpla weltii sp. nov. (FUR #11550). (A) Photo of the fossil part. (B) Interpretative drawing, part and counterpart were used as templates. Scale

bar: 2mm.

https://doi.org/10.1371/journal.pone.0275570.g008
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have a fringe of setae on their clypeus and most female Tryphoninae bear a stalked egg on

their ovipositor, whereas Ctenopelmatinae can be distinguished by a tooth on the apical mar-

gin of their fore tibia—all characters very difficult to impossible to see in compression fossils.

Comparing it with extant Tryphoninae, the rather stout body, vein 1Cu being longer than

cu-a in the hind wing, the gradually widened T1, the strong latero-median carinae on T1 with

the spiracle in front of the middle might point to the tribe Tryphonini, which also comprises

genera with a rather large pterostigma, as in this fossil (e.g. Ledora Kasparyan, 1983, Grypocen-
trus Ruthe, 1855).

Within extant Ctenopelmatinae, it gets difficult to suggest further placement of this fossil,

since many tribe-specific characteristics are not visible. But since Ctenopelmatinae taxa have

mostly a rather slender pterostigma, many could be excluded and taxa with a wider and stouter

pterostigma could be considered, such as some genera in the tribe Perilissini (e.g. Absyrtus
Holmgren, 1859, Tetrambon Townes, 1970, Nanium Townes, 1967).

For the geometric morphometric analysis, Ctenopelmatinae and Tryphoninae were thus

selected as possible subfamilies. For this fossil, three landmarks had to be removed (Table 1),

which resulted in a lower classification accuracy for the reference dataset, especially for Try-

phoninae (68.4% correctly assigned, Table 4). In the analysis, the fossil assigns clearly to Cte-

nopelmatinae with 100%, but the classification in the cross-validated CVA of Ctenopelmatinae

and Tryphoninae is rather low (Table 4). This might bias the classification of the fossil. The

mean shapes of both candidate subfamilies are very similar to each other (Fig 6) and the fore

wing venation of the fossil specimen does not resemble any other subfamily. The between-

group PCA was done with tribes from Tryphoninae and Ctenopelmatinae, where again the

fossils venation does not closely resemble any of the tribes according to the Euclidean distances

of the tribes averages (S5 Table). Nevertheless, the tribes with the smallest distance to the fossil

are Perilissini and Pionini in Ctenopelmatinae and Oedemopsini in Tryphoninae.

The classification result suggests a placement in Ctenopelmatinae. But because of the low

classification success of both subfamilies, the two bullae in the 2m-cu which are more rare in

Ctenopelmatinae than in Tryphoninae, and the lack of additional informative characteristics,

we place this fossil in Ctenopelmatinae as tentative. Furthermore, none of the extant genera in

Tryphoninae and Ctenopelmatinae show a conspicuously sinuous M&Rs vein as seen in this

fossil, and therefore we define the new genus Ebriosa.

Diagnosis. The genus differs from other Tryphoninae and Ctenopelmatinae genera in

having a strongly curved M&Rs vein in the fore wing, a character not present either in any

other ichneumonids. In addition, the genus is characterised by a long and wide pterostigma, a

1R1 vein that is shorter than the pterostigma length, an evenly bowed 2m-cu with 2 bullae, an

at least partly areolated propodeum, and a broad and gradually widening T1 with the spiracle

in the anterior half and latero-median carinae reaching beyond the middle.

Ebriosa flava Viertler, Spasojevic & Klopfstein, sp. nov. (Fig 9)

urn:lsid:zoobank.org:act:92A2E9BC-1712-4289-8295-7DC088E1B982

Etymology. “Flava” meaning blonde or yellow in Latin, named after the bright yellowish

body colour of the wasp.

Material. Holotype: male? (FUR #11112). Denmark, county: Morsø Kommune, locality:

Gullerup. Leg: Rettig, Erwin. Paratype: male? (FUR #13812). Denmark, county: unknown,

locality: unknown. Fur Formation, Ypresian epoch (56–54.5 mya). Leg. Rettig, Erwin.

Type preservation. Holotype mainly in dorsal view. Head slightly turned to the left, right

antenna partly missing. Mesosoma slightly turned to the side. Traces of carinae visible on pro-

podeum. Fore wings almost complete. Hind wings partial. Legs not clearly visible, but trace of

hind leg visible on counterpart and paratype. Metasoma in dorsal view, depressed, individual

tergites clearly visible. Genitalia not visible.
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Diagnosis. See genus diagnosis.

Description. Body 6.1–6.9 mm (6.1 mm). Head, mesoscutum and wing venation orange

to brownish. Pterostigma with dark brown spot in centre. Antenna, rest of mesosoma and

entire metasoma yellowish.

Head. Rather short. Flagellum 5.3 mm, with around 31 segments, evenly thick throughout

entire length; basal segments not clearly visible, appear at least twice as long as wide; median

and apical segments slightly longer than wide. Traces of occipital carina dorsolaterally visible.

Mesosoma. Short and stout. Notauli seem present at least in the very front, but length and

shape further back not discernible. Propodeum higher than long, with traces of carination.

Legs not clearly visible, appear slender.

Wings. Fore wing 5–5.5 mm (5 mm). Areolet closed, quadrate-oblique, 3rs-m 1.5x longer

than 2rs-m, 4M very short. 2m-cu evenly curved outwards, with two bullae that cover together

around 35% of total 2m-cu length. M&RS vein strongly curved. 4Cu about 1.4x 5Cu. 4Rs

straight. Ramulus absent. 1cu-a interstitial to 1M + 1Rs and intersection thickened; 1cu-a

emerges in a right angle. Pterostigma 2.7x as long as wide, 1.1x length of vein 1R1. Cell 2R1

Fig 9. Holotype of Ebriosa flava gen. et sp. nov. (FUR #11112). (A) Photo of the fossil part. (B) Interpretative drawing, fossil part and counterpart were used as

templates. (C) Strongly bowed M&Rs vein of the left fore wing, which is the name giving character. (D) Fore wing of the paratype #13812. Scale bars: (B) 2mm, (C) 1mm.

https://doi.org/10.1371/journal.pone.0275570.g009
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3.2x as long as wide. 2Cu 0.85x 1M + 1Rs, 1.45x r-rs. 1m-cu&2-Rs+M vein angled. 3Cu clearly

longer than 2cu-a. Hind wing, 1RS 0.8x rs-m. 1Cu slightly longer than cu-a.

Metasoma. Dorsoventrally compressed. T1 gradually widening and 1.14x as long as wide

posteriorly; spiracle in the anterior half; traces of latero-median carinae reach more than half

length of T1, parallel to slightly diverging. T2 0.58 as long as posteriorly wide. T2–T4 con-

stantly widening, with and after T5 tergites narrower again, T7 appears very short.

Orthocentrinae Förster, 1869

Entypoma? Förster, 1869

Entypoma? duergari Viertler, Spasojevic & Klopfstein, sp. nov. (Fig 10)

urn:lsid:zoobank.org:act:5D05BA68-9012-4B64-B9CD-31A7BBBFCEC6

Etymology. Because of the small size of this species, its name alludes to Duergar, subterra-

nean dwarves from the tabletop game Dungeons and Dragons.

Material. Holotype: female (FUR #11264). Denmark, county: Morsø Kommune, locality:

Klinten ved Klitgård. Leg: Rettig, Erwin. Paratype: female (FUR #11208). Denmark, county:

Morsø Kommune, locality: Klinten ved Klitgård. Fur Formation, Ypresian epoch (56–54.5

mya). Leg. Rettig, Erwin.

Type preservation. Holotype preserved in dorso-lateral view. Antenna partially visible on

counterpart. Traces of carination visible on propodeum. Fore wings almost complete. Hind

wing partially discernible. Fore and mid legs not well preserved but hind leg almost complete

with tarsal claw. Metasoma complete with preserved ovipositor and sheaths. Paratype pre-

served in dorsal view, almost complete, with antennae, hind wing and ovipositor partially

discernible.

Fig 10. Holotype of Entypoma? duergari sp. nov. (FUR #11264). (A) Photo of the fossil part. (B) Interpretative drawing, fossil part and counterpart were used as

templates. Scale bar: (B) 2mm.

https://doi.org/10.1371/journal.pone.0275570.g010
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Systematic placement. The fossil’s characteristics, especially the small size, outward

bowed 2m-cu and box-shaped T1 lead to Orthocentrinae, Pimplinae, or Tryphoninae as possi-

ble subfamilies. Orthocentrinae include some of the smallest species in Ichneumonidae, but

also taxa in Pimplinae and Tryphoninae can have a rather small size and share parts of the

rather large morphological variation found in Orthocentrinae. Many distinct characteristics

that most Orthocentrinae have, such as narrow tapered mandibles, a strongly convex clypeus

and a fringe of setae on the inner side of the hind tibia, are not visible in the fossils. Neverthe-

less, the large laterotergite 2 would point to a placement in Orthocentrinae. Within this sub-

family there are two genus-groups, the Orthocentrus-group and Helictes-group. Entypoma?

duergari sp. nov. resembles the latter due to the normal size of the scape, which is elongated in

the Orthocentrus-group. We also can exclude the Orthocentrus-group because they normally

have a strongly convex, bulging face, which seems not to be the case in these fossils.

The classification places this fossil to 87% (Table 4) in Orthocentrinae according to fore

wing venation. Furthermore, the fossil resembles taxa in the extant Helictes-group the most,

according to the between-group PCA in Orthocentrinae. The Euclidean distances are even

shorter between the fossil and the Helictes-group, than between the Helictes-group and the

Orthocentrus-group (S5 Table). The fossils fore wing venation does resemble the mean shape

of Orthocentrinae in having a relatively short but slightly deeper 2R1 cell, an outwards bowed

2m-cu, and vein 4Cu longer than 5Cu, and the pterostigma slightly enlarged (Fig 6).

Within Orthocentrinae, there are several genera that share body features with the fossil.

Since the fossils possess a closed areolet and a rather long ovipositor, we can exclude some gen-

era. Dialipsis Förster, 1869, Plectiscidea Viereck, 1914, Eusterinx Förster, 1869 and Blaptiscus
Thomson, 1892 have their T1 fused with S2 and rather narrow and elongate, which does not

match with the box-like T1 of these fossils. Aperileptus Förster, 1869 and Entypoma Förster,

1869 resemble this fossil by having two bullae on 2m-cu and the apex of S1 before the middle

of T1. Furthermore, in the hind wing, 1Cu is longer than cu-a in our fossils, which speaks for a

placement in Entypoma, since in Aperileptus, the vein 1Cu & cu-a is not intercepted. The prob-

able crease that separates the epipleura of T2 and T3, and the rather depressed metasoma

increase a possible affiliation to Entypoma. Nevertheless, to confirm the placement in Enty-
poma, we would need more details of the face and the mesosoma, like a small, rather flat clyp-

eus with narrowing and twisted mandibles, and long notauli that reach to the centre of the

mesoscutum. We thus express the uncertainty in the generic classification by adding a ques-

tion mark.

Diagnosis. There are seven other described fossils from theHelictes-group in Orthocentri-

nae, the oldest being Lithotorus cressoni Scudder, 1890 from the Green River Formation [36].

This species has a clearly pentagonal areolet and shorter 2R1 cell in the fore wing. The three

species from Baltic amber [47] all have a very slender and elongate T1. Finally, there are three

species classified in Eusterinx from the Late Eocene locality on Isle of Wight [48]. While two of

them have a very elongate T1 and elongate fore wings that clearly distinguish them from our

fossil species, Eusterinx vectensis (Cockerell, 1912) possesses a large closed areolet and might

have been placed in the wrong genus, since it lacks the metasoma and thus cannot be inter-

preted. With the visible characteristics it could as well belong to Entypoma, but it differs from

the present fossil by the straight 2m-cu in the fore wing. Entypoma? duergari sp. nov. differs

from extant Entypoma taxa by its small size and weak or absent notauli.

Description. Body 4.4–4.8 mm (4.4 mm). Head, mesosoma and T1 dark brown. Antenna,

legs, T2 and T3 seem yellow/orange. T 4–8 and ovipositor sheaths brown.

Head. Short and rather small. Flagellum 2.5–3 mm (2.5 mm), number of segments unclear

but at least 16; evenly thick throughout whole length. Temple appears narrow.
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Mesosoma. Rather short and stout. Notauli either absent or weak; if present then not

extending beyond middle of mesoscutum. Mesopleural furrow more or less straight. Meta-

pleuron about as long as wide. Pleural carina present; unclear if reduced posteriorly or com-

plete. Propodeum evenly rounded in profile, about as long as high; with longitudinal carinae

present, other carinae unclear. Legs seem slender. Hind leg with coxa of normal dimension,

slightly longer than wide; femur 3.2x as long as wide; tibia dimensions normal; tarsal claws

appear simple.

Wings. Fore wing 2.9–3.7 mm (2.9 mm). Areolet closed, quadrate-oblique, 4M short, 2+3M

and 3rs-m similar in length. 2m-cu slightly and evenly curved outwards, with two bullae,

which are covering about 36% of total 2m-cu length. 4Cu 1.8x 5Cu. 4Rs straight. Ramulus

absent. 1cu-a interstitial to 1M + 1Rs, with 1cu-a bowed distally. Pterostigma about 2.5x as

long as wide; 0 .8x 1R1. Cell 2R1 2.3x as long as wide. 2Cu 0.83x 1M + Rs, 1.1x r-rs. 1M + Rs

1.3x r-rs. 1m-cu&2-Rs+M angled. 3Cu clearly longer than 2cu-a. Hind wing with M + Cu

slightly curved distally; 1Cu longer than cu-a, last abscissa of RS and CU seem mostly

transparent.

Metasoma. Depressed or cylindrical. Sclerotized part of S1 seems not to reach spiracle,

apparently free from T1. Laterotergite 1 indistinct. Laterotergites 2, 3 and 4 rather broad,

about 0.4–0.5x as wide as long; appear to be separated from dorsal part of tergite by a crease.

T1 2x as long as posteriorly wide, box-like; with spiracle in anterior half; T2–T7 similar in

length, very short and wide. Ovipositor around 0.38x length of metasoma; ovipositor and

sheaths seem parallel-sided; shape of tip unclear.

Ctenopelmatinae? Förster, 1869

Perilissini? Thomson, 1883

Lathrolestes? Förster, 1869

Lathrolestes? zlatorog Viertler, Spasojevic & Klopfstein, sp. nov. (Fig 11)

urn:lsid:zoobank.org:act:508DC4A4-0549-483C-8C43-FF92DDA53DBE

Etymology. Named after Zlatorog, a chamois buck with golden horns from a Slovene folk-

lore, due to the yellowish bright and long antennae.

Material. Holotype: male? (FUR #10651). Denmark, county: Morsø Kommune, locality:

Ejerslev. Fur Formation, Ypresian epoch (56–54.5 mya). Leg: Verkleij, Jan.

Fig 11. Holotype of Lathrolestes? zlatorog sp. nov. (FUR #10651). (A) Photo of the fossil part. (B) Interpretative drawing, fossil part and counterpart were used as

templates. Scale bar: (B) 5mm.

https://doi.org/10.1371/journal.pone.0275570.g011
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Type preservation. Holotype in lateral view. Antenna well preserved, but single segments

indeterminable. Head in profile with visible mandible. Mesosoma well preserved, propodeum

shows traces of carination. Fore wings almost complete. Partial hind wings preserved, base

indiscernible. One hind leg well preserved with apical spurs and tarsal claw. Metasoma only

partially preserved, from T1 to T3 or T4. Genitalia not visible.

Systematic placement. The combination of a rather stout appearance, depressed meta-

soma with a sessile, stout first tergite and an oblique quadrate areolet with a short stalk leads to

some Banchinae, and most Tryphoninae and Ctenopelmatinae. However, the longitudinal

carina on the propodeum would exclude Banchinae, and also the bright antennae are rather

rare in this subfamily.

When trying to place the fossil in a candidate subfamily, the result of the cross-validated

CVA assigns a 32% probability for this fossil to belong in Ctenopelmatinae and a 68% proba-

bility to belong to Tryphoninae (Table 4). These two subfamilies are difficult to distinguish in

general, but also their fore wing venation seem very similar according to their Procrustes dis-

tances (Fig 4, S3 Table). The similarity of Tryphoninae and Ctenopelmatinae are also visible in

the meanshapes, with one of the few differences being the slightly broader 2M and 3M cells in

Tryphoninae (Fig 6). In the between-group PCA the two closest groups to the fossil fore wing

are two tribes in Ctenopelmatinae: Perilissini and Pionini. But the tribes Tryphonini, Oede-

mopsini and Exenterini, belonging to Tryphoninae, are also similar to the fossil fore wing. In

this fossil the classification analyses did not provide more insight in a distinct subfamily classi-

fication, but we compared the fossils body characteristics, including wing characteristics that

are not covered with our geometric morphometric approach, with the closest resembling tribes

of the bgPCA results. And since the straight shape of the 2m-cu with only one larger bulla (Fig

7) and the very long and brightly coloured antennae does rather point to Ctenopelmatinae, we

focused our comparison within those subfamilies tribes, but indicate the uncertainty of this

placements with questions marks.

Many characteristics to identify the fossil further are not visible, but the features we do see

match taxa of the tribe Perilissini, which usually possess a deep glymma, also visible in this fos-

sil. Also, the wing venation of the fossil matches Perilissini taxa, especially the shapes of the

2m-cu and 1m-cu&2-Rs+M veins and the emerging of the r-rs vein of the pterostigma.

Within the Perilissini, the fossil shares some characteristics with the genera Perilissus För-

ster, 1955 and Lathrolestes Förster, 1969, for example a flat to slightly convex clypeus in profile,

the lower tooth of the mandible a little longer than the upper, vein M+Cu in the fore wing only

weakly arched, and 1Cu in the hind wing about the same length as cu-a. The deep but rather

short glymma and the T1 that is around 1.65x as long as wide and only weakly arched, rather

point to Lathrolestes than Perilissus. To place the fossil with certainty in Lathrolestes, more

characteristic details and a complete preserved metasoma would be necessary.

Diagnosis. There are only four described fossil species in Ctenopelmatinae and none of

them are in the genus Lathrolestes or appear similar to this fossil. Lathrolestes? zlatorog sp. nov.

differs from extant Lathrolestes by its rather flat first tergite in dorsal view and its simple tarsal

claws on the hind leg.

Description. Body 6.8 mm. Head and mesosoma dark brown. Mandibles, antenna, legs

and metasoma bright orange. Wing venation dark brown.

Head. Mandible bidentate; lower tooth a little wider and longer than upper tooth; both tips

appear evenly rounded. Malar space about 0.8x mandibular width. Face including clypeus flat

in profile. Flagellum 8 mm, with at least 30 segments, evenly thick throughout whole length,

central flagellar segments about 1.2x as long as wide. Temple seems short.

Mesosoma. Pronotum about 0.6x as long as high. Notauli either absent or very weak. Epic-

nemial carina laterally and ventrally present. Propodeum rounded in profile; about as long as
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high; lateromedian and lateral longitudinal carinae present; anterior and posterior transverse

carinae indiscernible; hind margin appears simple. Hind leg with coxa of normal proportion;

femur 3.2x as long as wide; tibia normal, evenly tapering, with one tibial spur visible but the

second one potentially hidden; tarsal claw appears simple.

Wings. Fore wing 7.4 mm. Areolet closed, quadrate-oblique, with 4M about half the length

of 2Rs. Upper half of 2m-cu straight, then bowed outwards, with one large bulla covering 45%

of whole 2m-cu vein. 4Cu 1.5x of 5Cu. 4Rs almost straight. Ramulus absent. 1cu-a postfurcal

to 1M + 1Rs, with 1Cu about as vein width of 1cu-a; 1cu-a emerging distally. Pterostigma 2.9x

as long as wide. Cell 2R1 2.6x as long as wide. 5M tubular throughout whole length. 2Cu 0.7x

1M + 1Rs and 0.9x r-rs. 1m-cu&2-Rs+M arched. 3Cu almost double the length of 2cu-a. Hind

wing only partially visible, with 1Rs 1.5x rs-m.

Metasoma. Depressed until T4, rest unclear. T1 about 1.25x longer than wide; evenly taper-

ing to front; spiracle in anterior half; with trace of dorso-lateral carina. T2–T4 about 1.2x

wider than long.

Metopiinae Förster, 1869

Triclistus Förster,1869

Triclistus bibori Viertler, Spasojevic & Klopfstein, sp. nov. (Fig 12)

Fig 12. Holotype of Triclistus bibori sp. nov. (FUR #13809). (A) Photo of the fossil part. (B) Interpretative drawing, fossil part and

counterpart were used as templates. (C) Photo and drawn outlines of the fore tarsus, with the tarsomeres 2–4 very short and stout. (D)

Head with visible groove between antennae. Scale bars: (B) 4mm, (C) 1mm, (D) 0.5mm.

https://doi.org/10.1371/journal.pone.0275570.g012
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urn:lsid:zoobank.org:act:544F7D34-E61A-4862-9247-40612C518DEE

Etymology. Derived from the German name of the wasp Pokémon Bibor.

Material. Holotype: male? (FUR #13809; see also remarks below). Denmark, county:

unknown, locality: unknown. Leg: Rettig, Erwin. Paratype: male? (FUR #11215). Denmark,

county: Morsø Kommune, locality: Klinten ved Klitgård. Leg: Rettig, Erwin. Paratype: male?

(FUR #11218). Denmark, county: Morsø Kommune, locality: Klinten ved Klitgård. Leg: Rettig,

Erwin. Paratype: male? (FUR #13077). Denmark, county: Morsø Kommune, locality: Svalklit.

Fur Formation, Ypresian epoch (56–54.5 mya). Leg: Rettig, Erwin.

Type preservation. Holotype in ventral and dorsal view, part more dorsal and counter-

part more ventral. Apical part of both antennae mostly missing in part, well preserved in coun-

terpart. Mesosoma rather well preserved, propodeum with carination. Fore wings almost

complete. Hind wings, except vein 1Rs and 2Rs, indiscernible. All legs rather well preserved on

counterpart; especially hind coxae prominently visible. Metasoma distinctly preserved. Genita-

lia not well visible, hard to interpret.

Systematic placement. The character combination of these fossils strongly resembles

Metopiinae. As the extant species in this subfamily, the fossils possess a compact body shape, a

high lamella between the antennal sockets, short notauli, short and stout legs, shortened tarsal

segments in the fore legs, and the first tergite short and stout with the spiracle on the anterior

half, and with strong median longitudinal carinae.

The parallel-sided flagellum, the deep groove on the head between the antenna, and the

mid and hind tibia with two apical spurs, are typical for species in the genera Colpotrochia
Holmgren, 1856 and Triclistus. The distinct carination on the propodeum and the broad and

stout T1 in the fossils exclude Colpotrochia as a possible genus. The strongly postfurcal 1cu-a

to 1M + 1Rs, the broad T1 with two median longitudinal carinae and the stalked areolet are

highlighting the resemblance to Triclistus.
Because the body characteristics of this fossil so strongly point to this subfamily, we tested it

together with two other ophioniform subfamilies, Campopleginae and Ctenopelmatinae in the

geometric morphometrics analysis. Surprisingly, according to the fore wing venation in the

classification analysis, the fossil holotype does not cluster with extant Metopiinae, where we

removed three landmarks due to missing information (Table 1). Instead, the subfamily assign-

ment places the holotype closest to Ctenopelmatinae, followed by Campopleginae. Indeed, the

large distance between the wing venation of T. bibori sp. nov. and extant Metopiinae is some-

what at odds with the very similar morphology of the rest of the body. However, none of the

wing characteristics speak clearly against Metopiinae, and it might be possible that the

removed LMs (LM 18 and LM 19) are very informative for this subfamily, as we see changes in

the mean shapes (Fig 6). We thus also tested two of the paratypes (#11215 and #13077), which

possess almost complete fore wings and for which only one landmark had to be removed

(Table 1). Both paratypes classify in Metopiinae. Looking at the mean shapes of the subfamilies

and the fossil holotype, the slightly enlarged pterostigma would not point to Metopiinae, but

the strongly postfurcal 1cu-a and the clearly longer 3Cu in comparison with 2cu-a matches

well (Fig 6). In the between-group PCA, when considering the tribes of Ctenopelmatinae,

Campopleginae, Metopius and other Metopiinae, the paratypes resemble Metopiinae (without

Metopius), but also Perilissini in Ctenopelmatinae. In the same analysis, but within Metopiinae

only, the holotype and both paratypes are not only similar to each other, but also to Triclistus.
Considering the most complete fore wings of the paratypes, together with all other body

characteristics of the fossils, the systematic placement clearly leads to Triclistus in Metopiinae.

These fossils represent the oldest and only second fossil representative of Triclistus, the other

one being Triclistus ventrator Khalaim, 2008 [49] from the Oligocene of Biamo, Russia.
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Diagnosis. Triclistus bibori sp. nov. differs from T. ventrator by body length, with T. bibori
sp. nov. being almost twice the size. Furthermore, the areolet in this fossil is not as strongly pet-

iolate and unlike T. ventrator, T. bibori sp. nov. possesses two spurs on the hind tibia, where

one is relatively long and the other about half the length. But maybe the second tibial spur on

T. ventrator is missing due to poor preservation. Another difference to distinguish the two Tri-
clistus fossils, but which may also be an artefact of preservation, is the colouration of the meta-

soma, which seems dark brown to almost black in T. ventrator and bright orange/brown in T.

bibori sp. nov. From extant species of the genus, T. bibori sp. nov. can be distinguished by the

generally stouter flagellomeres, in combination with a large areolet and a rather short propo-

deum, which is usually more elongate in extant taxa.

Description. Body 7.5–8.8 mm (8.5 mm). Head and mesosoma dark brown. Antenna and

wing veins orange to brownish. Legs and metasoma orange. Paratypes with somewhat lighter

colouration, maybe due to surrounding rock.

Head. Rather short. Scape a little longer than wide. Pedicel smaller than scape. Flagellum

4.0 mm, with at least 25 segments, evenly thick throughout whole length; segments rather

stout, most 1.0–1.2x as long as wide. Lamella between antennal sockets reaching to around

height of median ocelli with parallel deep grooves.

Mesosoma. Rather stout. Notauli distinct but rather short. Propodeum short, with distinct

carination, pleural carina partially visible, as well as posterior transverse carina, lateromedian

longitudinal carina and lateral longitudinal carina. Legs short and stout. Tarsal segments 2–4

shortened in front leg. Two tibial spurs on mid tibia, similar in length. Hind femur medially

swollen. Hind tibia evenly tapered to apex; with two spurs, outer spur half as long as inner

spur. Tarsal claws appear simple.

Wings. Fore wing 5.7–6.3 mm (6.2 mm). Areolet closed, quadrate-oblique, 3rs-m with one

bulla and almost meeting 2m-cu directly, 4M nearly obliterate. Vein 2m-cu straight with one

bulla, which is covering 35% of total 2m-cu length. 4Cu 1.2x 5Cu. 4Rs almost straight. Ramulus

absent. 1cu-a postfurcal to 1M + 1Rs. Pterostigma 2.4x as long as wide, 0.8x length of vein 1R1.

Cell 2R1 2.8x as long as wide. 2Cu 0.82x 1M + 1Rs, same length as r-rs. 1M + 1Rs 1.2x r-rs.

1m-cu&2-Rs+M angled. 3Cu clearly longer than 2cu-a. Hind wing indiscernible.

Metasoma. Dorsoventrally compressed. T1–T6 wide, relatively short. T1 very stout, appears

parallel sided, about 0.9x as long as wide, with strong median longitudinal carina, reaching

more than half length of tergite. T2–T6 about 0.5x as long as wide. T7 appears partially

retracted. Genitalia not visible.

Remarks. Females in the genus Triclistus Förster, 1869 possess a characteristic hook on

the last tarsomere of the hind leg. Additionally, S6 in females is elongated, with an apical

rounded notch and T7 is completely retracted. Our fossils appear to have no hook on the tar-

somere, and a roundish, mostly partially retracted metasomal apex, which leads to the assump-

tion of our fossil specimens of T.? bibori sp. nov. being males.

Discussion

Robust data quality revealed

Our data quality evaluations showed negligible differences when different people place land-

marks, which confirms previous investigations of this aspect in other studies [54, 55]. We

could also demonstrate that the differences between forewing drawings from the literature and

photographs of flattened wings were minor, at least if the former were obtained in a standard-

ised fashion similar to the one used by Townes [36–38, 46]. This also suggests that photographs

of different species could easily be added to our dataset in the future. This is at least the case if

the dataset is used for classification purposes above the genus level, as some of our replicates
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using different congeneric species resulted in a partial overlap of intra- versus inter-generic

distances (Fig 2A). This was especially the case in some large genera and might partly be due

to non-monophyly of the involved genera; indeed, for instance the species included in Bathy-
plectes used to be classified in two different genera in the past [17]. In any case, while the limits

of our approach for classifying taxa at or below genus level requires further scrutiny, it appears

very robust for higher-level classification [10, 11].

Fossilisation artefacts appear to only have a minor effect on the performance of the method,

at least if the wings appear reasonably flat, which is the case in a large portion of compression

fossils. In our analysis, the fore wings of part and counterpart, as well as the left and right side

of a compression fossil, which often showed a slightly different quality of preservation, were

very similar. This indicates that it does not really matter which wing is used in the geometric

morphometric analysis, except if it is obviously distorted or damaged. This insight is especially

crucial for palaeontology, as preservation of compression fossils can vary widely [32].

Wing size and shape correlation

Fore wing shape is strongly correlated with centroid size in our dataset (Fig 3), with the aspect

ratio (length to width) increasing with size. This allometric relationship means that smaller

species tend to have relatively wider, and larger species relatively more narrow wings, which

might ensure a minimum surface area of the wing conferring sufficient uplift even in small

species. Our finding is in agreement with previous studies that found that fore wing length is a

good proxy for specimen size [56, 57], while fore wing width did not seem to be strongly corre-

lated to size, at least in Apoidea [58]. However, the relationship of size and aspect ratio varies

among insect groups, which might be due to differences in other aerodynamic properties of

the wings [59].

The wing cells of Darwin wasps tend to change in parallel with the entire wing, becoming

more narrow in larger species. This effect is strongest for the central and apical cells (Fig 3).

This leads to a rather even distribution of wing veins over the entire length and width of the

wing in larger specimens, which might stabilise the wing in larger species. A similar pattern,

including the increasing pterostigma width in smaller specimens, has been observed in other

Hymenoptera as well [59, 60], although considerable variation has been observed in other

insect orders [59].

We did not observe any reduction of wing veins in small-bodied species in our dataset, as it

is observed in many other groups of Hymenoptera [61]. Indeed, the wing venation of Darwin

wasps is surprisingly constant, with most veins present even in the smallest representatives of

the family [21]. However, there are two exceptions, Hybrizontinae and Neorhacodinae, both

rather small-bodied and species-poor subfamilies that were not included in our dataset. In

both cases, the reduction mostly concerns the apical part of the wing, and the remaining veins

furthermore shift towards the base [21].

Interestingly, the allometry effect varies among some of the subfamilies, despite some of

them sharing the same size range, e.g. Cremastinae and Tryphoninae. Ophioninae stand out in

this respect by exhibiting a rather large fore wing size range, but only minor allometric effects.

Most Ophioninae species are nocturnal, and wing features of nocturnal Hymenoptera also

seem exceptional in other lineages [15, 62], although the reason for this observation remains

unknown. Irrespective of their body size, Ophioninae wings all appear rather similar to those

found in previous analyses of larger hymenopterans, which possess a slender pterostigma and

more elongate distal cells, whose functions appear related to flying performance [62, 63]. Over-

all, the varying correlations of fore wing size and venation shape observed among many sub-

families might be caused by more than one factor. Evolutionary history, geographical
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components, hosts, selective pressures in response to mimicry, and body shape variation all

are factors that might influence shape and size differences [56, 64]. To disentangle the reasons

for the different allometry patterns among subfamilies, one needs to be able to rule out envi-

ronmental or genetic variation that affect size, or to know the extent of their influence in order

to correct for it [65].

Variation within and between extant subfamilies

According to the Procrustes variance within the subfamilies, the most extensive shape varia-

tion is found in Metopiinae and Cremastinae, whereas the least variance was found in Tersilo-

chinae and Campopleginae (Fig 4, S4 Table). Why fore wings of Cremastinae are the most

variable among the included subfamilies is unclear, given that the subfamily is rather well-

defined morphologically, with the exception of the Belesica group of genera, and has consis-

tently been recovered as monophyletic in phylogenetic analyses [20, 66]. Their wings not only

vary in cell dimensions, but also in areolet shape and pterostigma dimensions, although their

short and straight 2m-cu is very consistent. Ecology as a possible explanation for this large fore

wing variation seems unlikely, since they all do share similar habitats and hosts. The hosts

might be concealed differently, so the available space for their pupation might differ, but this is

highly speculative. In Metopiinae, the variation is introduced mostly by the genus Metopius,
which is represented by seven species in our dataset and exhibits a much narrower fore wing

and a clearly different areolet shape from the other Metopiinae genera (Fig 7). Metopius species

are also distinct in other body features, like having a shield-like face, only one mesotibial spur

and being generally larger than most other Metopiinae genera [67]. They also are exceptional

among other members of the subfamily in attacking free-ranging Lepidoptera, instead of hosts

that are hidden in silk webbing or leaf-rolls [21], so the difference in wing venation might be

due to this environmental factor or the size difference.

Wing characteristics like the shape and length of the cell 2R1, the emerging position of 1cu-

a, the shape of the areolet and many more have previously been used in identification keys [21,

68]. It is therefore surprising that this is the first geometric morphometric approach to distin-

guish ichneumonid subfamilies. While other geometric morphometric studies successfully dis-

criminated taxa at lower taxonomic ranks [69–71], we here demonstrate that fore wing

venation is sufficient to distinguish many extant ichneumonid subfamilies (Figs 4 and 5), with

shape differences usually larger between subfamilies than within them (Fig 4, S4 Table). Many

subfamilies can thus be reclassified successfully in the CVA, although some remain difficult to

distinguish, especially Ctenopelmatinae and Tryphoninae (Table 3). The classification accu-

racy could probably be increased by adding more species to each subfamily, considering that

there are more than 25’000 described ichneumonid species [17]. Subfamilies like Pimplinae

and Ctenopelmatinae are probably not even monophyletic [20, 21, 72], although at least in

Pimplinae, this did not have a noteworthy impact on the success of their classification; this

might be linked to the clade’s wing venation being rather plesiomorphic in many aspects [30].

In Ctenopelmatinae, the classification success was often low, especially when compared with

Tryphoninae (Table 4), and it might improve once the subfamily is split into monophyletic

entities. The similarity between Ctenopelmatinae and Tryphoninae was already observed in

many body characteristics before [21, 68], even though they are not very closely related within

Ophioniformes; they are thus an excellent example that morphoclustering can differ from phy-

logeny because of plesiomorphic characters and divergent rates of evolution [73]. While Try-

phoninae is probably the sister group of the rest of Ophioniformes [20], Ctenopelmatinae

might just have maintained the plesiomorphic fore wing venation in parallel. Plesiomorphic

trait retention, natural and sexual selection, genetic drift, and abiotic factors might change

PLOS ONE Wing morphometrics to place fossil Darwin wasps

PLOS ONE | https://doi.org/10.1371/journal.pone.0275570 November 17, 2022 30 / 38

https://doi.org/10.1371/journal.pone.0275570


wing venation faster than visible in molecular data, as seen in fossil halictid bees [11]. Conver-

gence could be another explanation, and it underlines the importance of not confusing mor-

phoclustering and phylogenetics. Ctenopelmatinae and Tryphoninae share the same hosts,

sawfly larvae [37, 68], which makes an ecological influence on morphology probable. But this

would need further investigations, and the complexity of influencing factors needs to be kept

in mind. Despite such effects, the high classification success observed in our study at the tribal

and subfamily level suggests that there is a lot of phylogenetic information in wing venation

waiting to be harvested even for deep phylogenetic studies in Darwin wasps.

Fossil classification aided by geometric morphometrics

Our study shows that in ichneumonids, geometric morphometrics of fore wings results in

robust leads to possible affiliations of fossil species to extant subfamilies. Quantifying the shape

similarity of fossil specimens with extant taxonomic groups by use of geometric morpho-

metrics is a rather new application, but it has already proven successful in various taxa. For

example, in a fossil agamid lizard (Amphibolurinae), the jaw was used to compare it with

extant genera [74]. In bees and wasps, the fore wings have repeatedly been used to assign fossils

to extant groups, for example in fossil bumble bees (Apidae) to tribes or subgenera [13, 75],

halictid bees (Halictidae) to tribes [11], and in ensign wasps (Evaniidae) to genera [16]. Using

geometric morphometrics to inform fossil classification is certainly a very promising approach

and will gain further traction in the near future.

However, we also encountered some potential pitfalls of the method. For instance, in Tri-
clistus bibori sp. nov., the classification analysis gave ambiguous results, which might be due to

the fact that three landmarks were missing in the holotype. This highlights the necessity of the

fore wings to be as complete as possible, since too much information could get lost with only a

few missing landmarks. Alternatively, the problem might also be explained by the relatively

small number of extant Metopiinae taxa in our analysis (N = 28); this would be difficult to rec-

tify, as the subfamily does not include many more genera. Finally, our ambiguous classification

result might also be an indication of an especially fast evolution of wing venation in Metopii-

nae, which is somewhat supported by the large difference between Metopius and the remaining

genera in the subfamily. Indeed such a speed-up of evolution could be expected to result in a

pronounced difference between fossil and extant taxa, but this remains to be shown and would

need further investigation.

Another potential pitfall relates to the fact that we attempted to classify the new fossil taxa

into existing groups, in our case extant subfamilies, or even further to extant tribes if possible.

Such an approach might however be unjustified for really old fossils, especially if there was a

high turnover of higher taxa through time. In such cases, the fossils might instead belong to a

stem lineage and not a crown group, or even to an extinct clade that has not yet been discov-

ered and named. Indeed, if the Euclidean distances in the between-group PCA were very large

between the fossil specimen and the given taxonomic groups, it might be due to the fact that

we did not include the closest relatives yet, which might be already extinct. For example, the

distances between Ebriosa flava gen. et sp. nov. and many tribes of Ctenopelmatinae or Try-

phoninae are larger than the distance between the tribes of those two subfamilies. The excep-

tional fore wing venation of Ebriosa flava sp. nov., with the strongly curved M&Rs vein, raises

the possibility of it belonging to an extinct tribe, a stem-lineage of either Tryphoninae or Cte-

nopelmatinae, or even to a now extinct subfamily that branched off even earlier. Classifying

the many remaining undescribed ichneumonid fossils from the Fur Formation and integrating

fossils from other formations of similar age, such as the Menat Formation in France [76, 77]

might help shed light on alternative groupings the fossil might belong to. Also, integrating the
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relevant wing vein characteristics into a proper phylogenetic analysis would help distinguish

between a stem position of a fossil in the tree of extant taxa and its belonging to a now extinct

lineage, a problem that cannot be easily solved by similarity-based methods.

Phylogeny-based methods in general would provide the means of making the most of the

information inherent in insect wing venation, while avoiding some of the pitfalls of similarity-

based methods. However, it remains somewhat unclear how to best extract relevant characters

for phylogenetic analyses from geometric morphometric datasets [78, 79]. Methods to estimate

the phylogenetic signal in GM data, on the other hand, are already rather well established [80],

and they could be used to separate the prevalent noise inherent in morphometric data from

the signal due to deep phylogenetic relationships. Such approaches could also be used to aid

placing fossil specimens, at least if an adequate phylogeny of the group is at hand.

Conclusions

With this work, we provide an example of how to use geometric morphometric approaches on

fossil wings in order to identify possible affiliations to extant groups. We demonstrate that the

method can be used successfully at higher taxonomic levels, as well as in mega-diverse taxa

such as Darwin wasps, at least if combined with a careful a priori choice of candidate subfami-

lies. It would be interesting to test whether such a preselection of potential groups is strictly

necessary, or if the information inherent in wing venation might in some cases even be suffi-

cient for higher-level placement, both in Darwin wasps and in other insect groups.

With more than 25,000 described extant species and only about 300 described fossil species,

we can be certain that there is still much to be discovered in the ichneumonid fossil record. It

is crucial to describe more fossil species to disentangle and estimate the true richness of Dar-

win wasps in different geological epochs. As we demonstrated here, geometric morphometrics

can be used to support a robust classification of these fossils, and our assembled dataset pro-

vides a basis for future comparative analyses in ichneumonid fore wing venation not only in

fossils, but also in extant species. It would definitely be worthwhile to add additional fore wing

data for as many groups as possible, including other subfamilies and additional fossil taxa

from different formation sites, to disentangle the considerable fore wing variation found in

these wasps. Our dataset is not only of help for fossils from the Fur Formation but might also

be applied to ichneumonid fossils from other formations, including amber inclusions and of

course fossils from the Cretaceous. As soon as a robust phylogeny of the family is at hand, it

would be interesting to use it to reconstruct ancestral shapes of fore wings, as it was done

before in Braconidae, the sister group of Ichneumonidae [81]. This may lead to explanations

of the evolutionary changes in wing venation and their potential causes, such as size, ecology,

and/or phylogeny.

In a next step, extracted wing shape information could also be incorporated into phyloge-

netic analyses, although it remains somewhat unclear how to best extract the most relevant

aspects of Darwin wasp wing venation for deep phylogenetics, while avoiding adding too

much noise to the analysis. Our analyses indicate that ichneumonid fore wings harbour a lot of

information even on phylogenetic relationships that date back over a hundred million years

ago [82], and a lot of this information has hitherto remained nearly untapped. Once the meth-

odological questions have been solved, integration of wing morphology in a total-evidence

phylogenetic and maybe even dating framework could thus contribute to a better understand-

ing of the history of this parasitoid taxon through time and help elucidate the drivers behind

its extraordinary species richness. It is highly likely that similarly underexplored sources of

information persist in many other taxonomic groups, given that morphometrics is assumed by

many authors to be too noisy to recover deep phylogenetic relationships and is thus still mostly
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used at comparatively low taxonomic levels [80]. While this might be true in many cases, our

results indicate that it is worthwhile to challenge this notion from time to time, and to further

invest in ways to separate signal from noise in morphometric datasets.

Supporting information

S1 Fig. Canonical variation analysis with nine extant subfamilies. Plot of the first two CV

axes with examples of the shape at the maximum and minimum of the first two canonical axes.

If subfamilies are more or less separate from others, we coloured the max/min shape of the

wing accordingly. Grey wing outlines represent the general shape if several subfamilies over-

lap. The outlines on the wing illustrations are interpretative and oriented on the specimen that

has the minimum/maximum CV score on the respective axis.

(TIF)

S2 Fig. Canonical axis 5 against canonical axis 6 of seven extant subfamilies. The fore wing

shown in CV5 + 3 represents a Campopleginae fore wing, the fore wing in CV6 +3 represents

a Tryphoninae fore wing. The other two greyish fore wing shapes represent the most common

shape, where most species cluster in the plot.

(TIF)

S1 Table. Reference dataset. List of all included taxa with information of body and fore wing

length in both sexes, as well as the calculated mean of those measurements, if a range was

given.

(XLSX)

S2 Table. Procrustes ANOVA results of all three data quality assessments. Shows the sam-

pling for each data quality assessment and the corresponding results of the Procrustes

ANOVA.

(XLSX)

S3 Table. Procrustes variance and distances of extant subfamilies. The Procrustes variance

within each subfamily is shown. Additionally, the mean distances between species pairs among

subfamilies is listed in an ordered manner.

(XLSX)

S4 Table. Regression analyses of shape and size. Results of the Procrustes ANOVA are

shown, including subfamily affiliation and centroid size as variables to explain fore wing vena-

tion shape. The unpooled and pooled regression analyses are shown, as well as the correspond-

ing classification results using their residuals, as well as the raw dataset (Procrustes

coordinates).

(XLSX)

S5 Table. Fossil assignment. Classification results of each new fossil specimen and results of

the between-group PCA for the narrower groups of the candidate subfamilies.

(XLSX)

S1 File. TPS data quality assessment 1 and 2. Data set of data quality assessment 1 and 2,

including a Campopleginae subset, where landmarks were placed by two different persons

(“A” represents person 1, “M” represents person 2) on illustrations and once on photographs

(represented by “p”).

(TPS)

S2 File. TPS data quality assessment 3. Data set of data quality assessment 3, including the

landmark placement of the five new fossil specimens with part/counterpart and right/left side
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if available.

(TPS)

S3 File. TPS reference data set. Reference data set, including 333 extant species, 9 fossil Pim-

plinae from the Fur Formation, the five new fossil species (holotypes) and the two paratypes of

Triclistus bibori sp. nov.

(TPS)
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54. Takács P, Vitál Z, Ferincz Á, Staszny Á. Repeatability, reproducibility, separative power and subjectivity

of different fish morphometric analysis methods. PLoS One. 2016; 11: 1–16. https://doi.org/10.1371/

journal.pone.0157890 PMID: 27327896
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