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The Hymenopteran Tree of Life: Evidence from Protein-
Coding Genes and Objectively Aligned Ribosomal Data
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1 Department of Biodiversity Informatics, Swedish Museum of Natural History, Stockholm, Sweden, 2 Natural History Museum of Denmark, Copenhagen,
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Abstract

Previous molecular analyses of higher hymenopteran relationships have largely been based on subjectively aligned
ribosomal sequences (18S and 28S). Here, we reanalyze the 18S and 28S data (unaligned about 4.4 kb) using an
objective and a semi-objective alignment approach, based on MAFFT and BAli-Phy, respectively. Furthermore, we
present the first analyses of a substantial protein-coding data set (4.6 kb from one mitochondrial and four nuclear
genes). Our results indicate that previous studies may have suffered from inflated support values due to subjective
alignment of the ribosomal sequences, but apparently not from significant biases. The protein data provide
independent confirmation of several earlier results, including the monophyly of non-xyelid hymenopterans,
Pamphilioidea + Unicalcarida, Unicalcarida, Vespina, Apocrita, Proctotrupomorpha and core Proctotrupomorpha. The
protein data confirm that Aculeata are nested within a paraphyletic Evaniomorpha, but cast doubt on the monophyly
of Evanioidea. Combining the available morphological, ribosomal and protein-coding data, we examine the total-
evidence signal as well as congruence and conflict among the three data sources. Despite an emerging consensus
on many higher-level hymenopteran relationships, several problems remain unresolved or contentious, including
rooting of the hymenopteran tree, relationships of the woodwasps, placement of Stephanoidea and Ceraphronoidea,
and the sister group of Aculeata.
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Introduction

The Hymenoptera (sawflies, wasps, bees and ants) are one
of the four largest insect orders, with more than 146,000
described species [1] (J.T. Huber, personal communication).
The oldest fossils belong to the family Xyelidae and date back
to the middle Triassic (about 235 Ma) [2], but recent age
estimates based on molecular data suggest a much earlier
origin in the late Carboniferous (about 311 Ma) [3,4].
Hymenoptera assume a wide range of different life styles, from
phytophagous to parasitic and predatory [1,5], occupy a wide
range of ecological niches, and have undergone several
transitions to eusociality [6,7]. Most species live as parasitoids
of other insect larvae and thus fulfill a vital role in most
terrestrial ecosystems, and many aculeates are economically
important pollinators or predators. Despite their ecological and
economic importance, especially the parasitic hymenopterans
are one of the most severely understudied insect groups, with

large regions of the world virtually unexplored, and undescribed
species discovered at a regular pace even in well-studied
faunas in the Western Palearctic and Nearctic [8]. Conservative
estimates suggest that over 600,000 species of Hymenoptera
may exist [9], although much higher numbers of 1-2.5 million
species have been proposed [10,11].

The history of hymenopteran phylogenetic research dates
back to pre-cladistic times, when the traditional division into the
Symphyta (sawflies and woodwasps, without a wasp waist) and
Apocrita (hymenopterans with a wasp waist) was established,
as was the paraphily of the former with respect to the latter
[12]. Apocritans were further divided into the Parasitica
(parasitoid wasps) and Aculeata (stinging wasps), with the
latter believed to be nested within the former. Rasnitsyn, in a
series of seminal papers examining the morphology of both
recent and fossil taxa [2,13] (and references there-in),
proposed a very influential phylogenetic hypothesis. One of the
most innovative aspects of this hypothesis was the division of
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the Apocrita into four clades, the Evaniomorpha,
Proctotrupomorpha, Ichneumonoidea (‘Ichneumonomorpha’)
and Aculeata (‘Vespomorpha’), only the last two of which had
been recognized previously. Rasnitsyn was also the first to
provide convincing evidence for the monophyly of ‘Vespina’,
consisting of the sawfly family Orussidae and the Apocrita.
However, Rasnitsyn never provided an explicit quantitative
analysis, and a later attempt to specify the character
observations and subject them to cladistics analysis [14]
indicated that there was little objective support for the proposed
groupings in the Apocrita.

Since then, several morphological and early molecular
studies have improved our understanding of hymenopteran
relationships while leaving many questions open. Sharkey [12]
summarized earlier attempts to reconstruct the hymenopteran
tree of life, setting the stage for a concerted effort of many
international specialists collaborating under the Hymenoptera
Tree of Life project (HymAToL). Three papers on higher-level
hymenopteran relationships stemming from this project have
recently been published, relying on morphology [15], molecular
data [16], and both [17]. Vilhelmsen et al. [15] described 273
morphological characters from mesosomal anatomy, scored
them for 89 species across the hymenopteran tree, and
assessed their phylogenetic information content. Heraty et al.
[16] analyzed approx. 6.2 kb of molecular sequences from four
markers: the ribosomal 18S and 28S, the mitochondrial
cytochrome oxidase 1 (CO1) and one copy of the nuclear
elongation factor 1-α. They used both parsimony and statistical
approaches. Sharkey et al. [17] combined the molecular
dataset, Vilhelmsen et al’s [15] mesosomal characters, and 115
additional morphological characters from other parts of the
body into a total-evidence dataset which they analyzed under
the parsimony criterion.

Briefly, these studies show that morphological data resolve
part of the basal sawfly grade but contain little information
about relationships above the superfamily level in the Apocrita.
The molecular data, in contrast, shed considerable light on
apocritan relationships. For instance, they support the
monophyly of Proctotrupomorpha, while showing that the
Aculeata are nested within a paraphyletic Evaniomorpha. They
also corroborate the monophyly of the much discussed
Evanioidea (including Gasteruptiidae, Aulacidae and
Evaniidae), and identify several novel groupings, such as the
‘core Proctotrupomorpha’ (Proctotrupomorpha without
Cynipoidea and Platygastroidea), the Diaprioidea (Diapriidae,
Monomachidae and Maamingidae), the ‘core Proctotrupoidea’
(Proctotrupoidea without Diaprioidea), and a clade consisting of
Trigonaloidea + Megalyroidea. At the same time, the molecular
data leave many parts of the apocritan tree unresolved, in
particular relationships within Aculeata and Evaniomorpha.
More disturbingly, they also suggest groupings that conflict
strongly with morphology-based conclusions on sawfly
relationships. In particular, they fail to support the established
consensus view on woodwasp relationships and, depending on
alignment, even fail to support the monophyly of Apocrita itself,
placing the Orussoidea among Evaniomorpha lineages.

One of the major problems in interpreting the molecular
results is that they are based to a large extent on ribosomal

data. The ribosomal sequences (18S and 28S) comprise
almost three quarters of the HymAToL data, and an even larger
fraction of the phylogenetically informative sites. Ribosomal
sequences are challenging to align correctly, especially at the
evolutionary distances involved in higher hymenopteran
phylogeny, and all currently available methods involve some
compromises. Heraty et al. [16] employed two approaches, a
by-eye alignment and an alignment based on predicted
secondary structure; Sharkey et al. [17] chose to use the
former. Both methods rely on human judgment and hence the
results may have been influenced by preconceived notions of
phylogenetic relationships. As evidenced by the differences
between the results based on the by-eye and secondary-
structure alignments [16], the alignment method can strongly
affect phylogenetic inference.

One way to remove potential alignment bias from the
equation is to align the ribosomal sequences using methods
that do not involve subjective human input. Another possibility
is to infer relationships based entirely on easily aligned protein-
coding sequences, but until now there have not been enough
protein-coding data available. In this paper, we explore both
tactics. First, we explore objective alignment of the ribosomal
data. Ideally, the alignment should be based on models
including nucleotide substitutions as well as insertion and
deletion events, and phylogenetic inference should
accommodate alignment uncertainty. In principle, such
methods are available in a Bayesian framework [18,19], but
they are still too computationally expensive to be applied to the
HymAToL data. Instead, we use a two-step approach in which
we obtain a ribosomal alignment without or with very little
subjective human input first and then subject it to analysis
using standard methods. Specifically, we use two methods for
obtaining the ribosomal alignments: i) a fully objective, iterative
approach using MAFFT [20]; and ii) a semi-objective Bayesian
approach based on an explicit model of indel evolution, as
implemented in the program BAli-Phy [21], applied to
subalignments that are then pieced together. Second, we add
three nuclear protein-coding genes to the HymAToL dataset:
RNA polymerase II, the carbamoyl phosphate synthase domain
of CAD, and the F1 copy of elongation factor 1-α. This allows
us for the first time to infer higher relationships across the
Hymenoptera based entirely on protein-coding data (4.6 kb
from five markers). Finally, in order to identify the origins of
different, sometimes conflicting, phylogenetic signals in the
resulting data, we conducted in-depth analyses of the different
data partitions separately and combined in a fully stochastic,
Bayesian framework.

Materials and Methods

Taxon sampling and molecular methods
Our taxon sampling is largely based on the HymAToL

sampling as described in Heraty et al. [16] and Sharkey et al.
[17], with minor modifications. While excluding some of the
aculeate taxa with low gene coverage that were over-
represented in the data matrix, we added a representative of
an additional family, the Megalodontesidae (Pamphilioidea). In
total, we included 110 hymenopteran species covering 66
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families and all 22 superfamilies [12], and 27 outgroup taxa
(Table 1).

The previous data matrix from the HymAToL project
encompassed, unaligned, about 1,400 bp of 18S rRNA (by-eye
alignment: 2,014 bp, secondary structure alignment: 1,860 bp),
about 3,000 bp of 28S rRNA (by-eye alignment: 4,681 bp,
secondary structure alignment: 3,252 bp; both after exclusion
of unreliably aligned portions), 770 bp of CO1 mtDNA, and
1,040 bp of the coding region of the F2 copy of elongation
factor 1-α (EF1α-F2). To these four markers, we added
sequences from three nuclear, protein-coding genes: 990 bp of
the carbamoylphosphate synthetase domain of the Conserved
ATPase Domain (CAD), 800 bp of RNA polymerase II (POL),
and 1,040 bp of the F1 copy of the elongation factor 1-α (EF1α-
F1). The F1 and F2 copies of EF1α in Hymenoptera originate
from a duplication event that took place before the radiation of
the order and the two copies evolved independently since [22].

Laboratory protocols followed Heraty et al. [16] and
Klopfstein and Ronquist [22]. The wide taxonomic scope of this
study necessitated the use of a range of primer pairs for
different taxonomic groups. While primers and protocols used
for the EF1α-F1 sequences are given elsewhere [22], primers
for CAD and POL are listed in Supplementary Table S1. Gene
coverage was 84%, so on average six of the seven genes were
sequenced per taxon. The 18S and 28S genes were
sequenced for all taxa, CO1 for 92%, EF1α-F2 for 85%, EF1α-
F1 for 61% (75% in Hymenoptera), POL for 76% and CAD for
80% of the taxa. Genbank accession numbers are given in
Table 1.

Multiple-sequence alignment
Protein-coding genes were aligned in Mega5 [23] after

translation into amino acids. Few gaps were detected, and
alignment was straightforward. Introns were identified by
alignment against known coding regions from Genbank (Table
1) and their exact position conditioned on the presence of GT-
AG splicing sites. Introns were not objectively alignable and
were removed from all further analyses.

For the MAFFT alignment of the ribosomal sequences, we
used the E-INS-i algorithm as available on the web server at
http://mafft.cbrc.jp/alignment/server/ with all parameters at their
default values [20]. This algorithm has been shown to be more
accurate for difficult alignments than other iterative alignment
procedures on a wide range of benchmarks, in several
simulation studies [24,25], and also was the preferred
alignment algorithm for ribosomal stem regions in analyses of
Chalcidoidea [26].

As an alternative approach, we used the program BAli-Phy
[19,21] with a model of indel evolution that takes branch
lengths into account [27] to obtain MAP (maximum posterior
probability) subalignments of subsets of taxa that were later
pieced together into a complete alignment. We split our data in
four different taxon sets. The first set included all outgroup taxa
and one representative of each hymenopteran superfamily, the
second set contained all remaining symphytan taxa, the third
the species of Proctotrupomorpha, and the fourth the rest of
the apocritan taxa. Each of these four taxon sets was then
aligned separately in BAli-Phy under a GTR + Γ + I substitution

model. In order to speed up convergence, we introduced
multiple alignment constraints. To do so, we examined the
secondary-structure alignment from Heraty et al. [16] for
length-constant stem regions of at least length 10 bp, and fixed
the alignment at a conserved base in the middle of each such
stem. A total of 48 and 85 alignment constraints were invoked
for 18S and 28S, respectively. Because the 28S alignment
used too much memory to be run in a single analysis, we cut
the alignment into two parts at one of the constraint points
around the middle of the sequence, and ran it in two separate
analyses. For all four taxon sets, which included from 16 to 33
taxa each, we ran four independent runs for seven days (the
maximum period) at the National Supercomputer Center in
Linköping, Sweden (NSC). Most of the runs did not reach the
aspired topology convergence (the average standard deviation
of split frequencies (ASDSF) between runs for the different
taxon sets was 0.003-0.09 for 18S and 0.04-0.17 for 28S), but
the sample of other parameters had reached convergence as
judged from effective sample sizes > 100. The MAP alignments
obtained from these runs were combined using OPAL [28].
First, we merged the outgroup and backbone taxa with
Symphyta, then added the remaining Apocrita without
Proctotrupomorpha, and finally merged all of these with
Proctotrupomorpha. Alignment and polishing methods were set
to “exact”, the distance type to “normalized alignment costs”,
and the polishing approach to “random three-cut”. Nineteen of
the 18S and 36 of the 28S sequences had missing parts, which
were not sequenced. Because BAli-Phy relies on an explicit
indel model of evolution and gaps thus become informative,
these sequences had to be removed from the BAli-Phy
analyses. We added these fragmentary sequences to the final
BAli-Phy alignment using the “add” option in MAFFT [29].

Data properties
The variation present in the different genes and gene

partitions was examined using the “cstatus” command, and a
basic test of non-stationarity of nucleotide composition was
performed with the command “basefreqs” in PAUP* [30].
Saturation plots for each gene and for the third codon positions
of protein-coding genes were produced by retrieving pairwise
uncorrected p-distances in Mega 5 [23], and plotting them
against inferred branch-length distances on the tree with the
highest likelihood found during the Bayesian tree search based
on the single genes (R script available from the first author on
request). The third codon positions of all genes showed clear
signs of saturation and non-stationarity (Table 2 and Figure 1),
so we also analyzed our data after excluding them.

In order to get a rough estimate of the performance of the
different genes (or of their contribution to the final phylogenetic
inference) and to assess the quality of the two alignment
approaches for the rRNA partition, we compared the Bayesian
tree samples obtained from the single-gene analyses and from
an analysis of morphology alone (see below) to the protein-
coding and total-evidence tree samples. As a measure of
topological distance, we used ASDSF values as obtained with
the ‘sumt’ command in MrBayes 3.2 [31]. We compared 10,000
trees from each set after reducing the trees to taxa shared in all
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Table 1. Taxon sampling and Genbank accession numbers.

Taxa    GenBank Accession Numbers    
   18S 28S COI EF1α-F1 EF1α-F2 POL CAD
Odonata composite taxona  FN3561661 FJ5965682 EF1767213 (missing) AY5802114 AB5968995 (missing)
Orthoptera          
 Acrididae several genera AY859547 AY859546 EU370925 (missing) AB583233 AB596906 (missing)
 Grylloidea several genera AY521869 AY859544 AF514693 (missing) AB583232 AB596908 (missing)
 Stenopelmatidae Stenopelmatus sp. AY121145 AY125285 EF030116 (missing) (missing) (missing) (missing)
Dermaptera composite taxon  AY5218406 EU4268767 HM385637 (missing) AY3054647 AY3055627 (missing)
Thysanoptera composite taxon  AY6304458 AY5233848 GU3930239 (missing) AY82747910 AB5969169 GQ2655888

Hemiptera composite taxon  LHU0647611 DQ13358412
AY25303813,
AY74483814

 HP42935715 AB59691916 XM00194360017

Neuroptera composite taxon  AF42379018 AY52179418 FJ85990619 (missing) JQ51951220 AB59692721 KC21314820

Megaloptera composite taxon  AY52186422 AY52179322 AY75051923 (missing) HM15672122 AB59692524 EU86015422
Rhaphidioptera          
 Inocellidae Negha sp. AY521865 AY521795 EU839744 (missing) (missing) (missing) EU860130
 Raphidiidae Raphidiidae sp. GU169690 GU169693 GU169696 (missing) EU414713 (missing) (missing)
Mecoptera          

 Panorpidae
Panorpa sp.
(composite)

GU169691 GU169694 GU169697 (missing) AF423866 AB596933 GQ265595

 Bittacidae
Bittacus sp.
(composite)

AF286290 AF423933 EF050551 (missing) AF423822 (missing) GQ265603

Coleoptera          

 Belidae
Oxycraspedus

cribricollis

(Blanchard)
FJ867778 FJ867698 FJ867811 (missing) FJ867881 (missing) (missing)

 Scirtidae several genera GU591990 GU591989 NC011320 (missing) (missing) (missing) (missing)
 Dytiscidae several genera GU591992 GU591991 FN263054 (missing) FN256352 EU677586 EU677529

 Carabidae
Bembidion sp.
(composite)

GQ503348 GQ503347 GU347089 (missing) GQ503346 EU677593 EF649423

 Myxophaga composite taxon GU59199325 GU59199425 GQ50334226 (missing) GQ50334526 HM15672727 HM15672627

 Archostemata composite taxon EU79741128 GU59199529,30 EU83976231 (missing) GQ50334432 EU67757932 EU67752532

Lepidoptera          
 Cossidae several genera AF423783 AY521785 GU090140 (missing) GU829379 (missing) GQ283590

 Micropterigidae
Micropterix sp.
(composite)

GU169692 GU169695 HQ200895 (missing)
GU828950,
GU829241

(missing) GU828116

Trichoptera          

 Hydropsychidae
Hydropsyche sp.
(composite)

AF286291 AF338267 FN179145 (missing) FM998455 FN178740 FN178964

Diptera          

 Deuterophlebiidae
Deuterophlebia

coloradensis

Pennak
FJ040539 FJ040539 GQ465781 (missing) (missing) (missing) FJ040594

 Ptychopteridae
Ptychoptera

quadrifasciata Say
FJ040542 GQ465777 GQ465782 (missing) GQ465785 (missing) FJ040598

 Tipulidae
Tipula abdominalis

Say (composite)
FJ040553 GQ465778 AY165639 (missing) GQ465786 (missing) GQ265584

 Stratiomyidae
Hermetia illucens

L.
DQ168754 GQ465779 GQ465783 (missing) GQ465787 (missing) (missing)

 Muscidae
Musca domestica

L.
DQ656974 GQ465780 AF104622 (missing) DQ657113 (missing) AY280689

Hymenoptera          
Apoidea          

 Ampulicidae
Ampulex

compressa

(Fabricius)
GQ410619 GQ374726 GQ374639 JQ519513 JQ519593 (missing) KC213149

The Hymenopteran Tree of Life
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Table 1 (continued).

Taxa    GenBank Accession Numbers    
   18S 28S COI EF1α-F1 EF1α-F2 POL CAD

 Apidae
Apis mellifera

Linnaeus
AY703484 AY703551

FJ582090,
AF250946

X52884,
X52885

AF015267 KC213058 KC213150

  
Hesperapis

regularis (Cresson)
AY995665 † GQ374630 (missing) AY585151 KC213059 KC213151

 Crabronidae
Pison chilense

Spinola
GQ410608 GQ374715 GQ374629 JQ519514 JQ519595 KC213060 KC213152

 Sphecidae
Stangeella

cyaniventris

(Guérin-Ménevill
GQ410616 GQ374723 GQ374637 JQ519515 JQ519596 KC213061 KC213153

Cephoidea          

 Cephidae
Cephus pygmeus

(Linnaeus) / C.

nigrinus (Thomson)
GQ410588 GQ374695 EF032228 (missing) JQ519597 KC213062 KC213154

  
Hartigia trimaculata

(Say)
GQ410589 GQ374696 EF032230 JQ519516 JQ519598 KC213063 KC213155

Ceraphronoidea          

 Ceraphronidae
Ceraphron

bispinosus (Nees),
Ceraphron sp.

GQ410626 GQ374733 GQ374642 (missing) JQ519599 KC213064 KC213156

 Megaspilidae Lagynodes sp. GQ410624 GQ374731 (missing) JQ519517 JQ519600 KC213065 KC213157

  
Megaspilus

fuscipennis

(Ashmead)
GQ410625 GQ374732 (missing) JQ519518 JQ519601 KC213066 KC213158

Chalcidoidea          

 Aphelinidae
Coccobius fulvus

(Compere &
Annecke)

GQ410673 GQ374780 GQ374675 (missing) (missing) (missing) (missing)

  
Coccophagus rusti

Compere
GQ410674 GQ374781 GQ374676 JQ519519 JQ519602 KC213067 (missing)

 Calesinae
Cales noacki

Howard
GQ410670 GQ374777 (missing) (missing) JQ519603 KC213068 (missing)

 Chalcididae
Acanthochalcis

nigricans Cameron
GQ410679 GQ374786 GQ374680 (missing) JQ519604 (missing) (missing)

 Eucharitidae
Psilocharis afra

Heraty
GQ410680 GQ374787 KC213237 JQ519520 JQ519605 KC213069 (missing)

 Eulophidae
Cirrospilus

coachellae Gates
GQ410672 GQ374779 GQ374674 JQ519521 JQ519606 KC213070 KC213159

 Eurytomidae
Eurytoma gigantea

Walsh
GQ410671 GQ374778 GQ374673 (missing) JQ519607 KC213071 (missing)

 Mymaridae Australomymar sp. GQ410668 GQ374775 GQ374671 JQ519522 (missing) KC213072 KC213160

  
Gonatocerus

ashmeadi Girault,
Gonatorcerus sp.

GQ410667 GQ374774 DQ328644 (missing) JQ519608 KC213073 KC213161

 Pteromalidae Cleonymus sp. GQ410678 GQ374785 GQ374679 (missing) JQ519609 KC213074 KC213162

  
Nasonia vitripennis

Walker
GQ410677 GQ374784 GQ374678 NC015867 JQ519610 KC213075 KC213163

 Rotoitidae
Chiloe micropteron

Gibson & Huber
GQ410669 GQ374776 GQ374672 (missing) JQ519611 (missing) (missing)

 Tetracampidae
Foersterella

reptans (Nees)
GQ410675 GQ374782 KC213238 (missing) JQ519612 KC213076 KC213164

 Torymidae
Megastigmus

transvaalensis

(Hussey)
GQ410676 GQ374783 GQ374677 JQ519523 JQ519613 KC213077 KC213165

Chrysidoidea          
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Table 1 (continued).

Taxa    GenBank Accession Numbers    
   18S 28S COI EF1α-F1 EF1α-F2 POL CAD

 Bethylidae
Cephalonomia

stephanoderis

Betrem
GQ410610 GQ374717 GQ374632 JQ519524 JQ519614 KC213078 KC213166

 Chrysididae
Chrysis cembricola

Krombein
GQ410611 GQ374718 GQ374633 JQ519525 (missing) (missing) KC213167

 Plumariidae
Myrmecopterina

sp.
GQ410618 GQ374725 KC213239 JQ519526 (missing) KC213079 KC213168

 Scolebythidae
Scolebythus

madecassus Evans
GQ410609 GQ374716 GQ374631 JQ519527 JQ519615 KC213080 KC213169

Cynipoidea          
 Cynipidae Diplolepis sp. GQ410647 GQ374754 GQ374659 JQ519528 JQ519616 KC213081 (missing)
  Periclistus sp. GQ410648 GQ374755 AF395181 JQ519529 JQ519617 KC213082 KC213170
 Figitidae Anacharis sp. GQ410651 GQ374758 (missing) JQ519530 JQ519618 KC213083 KC213171
  Melanips sp. GQ410649 GQ374756 GQ374660 JQ519531 JQ519619 KC213084 KC213172

  
Parnips nigripes

(Barbotin)
GQ410650 GQ374757 GQ374661 JQ519532 JQ519620 KC213085 KC213173

 Ibaliidae Ibalia sp. GQ410645 GQ374752 GQ374657 JQ519533 JQ519621 KC213086 KC213174
 Liopteridae Paramblynotus sp. GQ410646 GQ374753 GQ374658 JQ519534 JQ519622 KC213087 KC213175
Diaprioidea          
 Diapriidae Belyta sp. GQ410663 GQ374770 (missing) JQ519535 JQ519623 KC213088 KC213176
  Ismarus sp. GQ410662 GQ374769 GQ374668 JQ519536 (missing) KC213089 KC213177

  
Pantolytomyia

ferruginea Dodd
GQ410660 GQ374767 GQ374666 JQ519537 JQ519624 KC213090 KC213178

  Poecilopsilus sp. GQ410661 GQ374768 GQ374667 JQ519538 JQ519625 (missing) KC213179

 Maamingidae
Maaminga marrisi

Early et al.,
Maaminga sp.

GQ410664 GQ374771 GQ374669 JQ519539 JQ519626 KC213091 KC213180

 Monomachidae Monomachus sp. GQ410652 GQ374759 GQ374662 JQ519540 JQ519627 KC213092 KC213181
Evanioidea          

 Aulacidae
Aulacus impolitus

Smith
GQ410638 GQ374745 GQ374652 JQ519541 JQ519628 (missing) KC213182

  
Pristaulacus

strangaliae Rohwer
GQ410635 GQ374742 GQ374649 JQ519542 JQ519629 KC213093 KC213183

 Evaniidae
Brachygaster

minuta (Olivier)
GQ410634 GQ374741 AY800156 JQ519543 (missing) KC213094 KC213184

  
Evania albofacialis

Cameron
GQ410632 GQ374739 GQ374647 JQ519544 (missing) (missing) KC213185

  
Evaniella

semaeoda Bradley
GQ410633 GQ374740 GQ374648 JQ519545 JQ519630 KC213095 KC213186

 Gasteruptiidae Gasteruption sp. GQ410636 GQ374743 GQ374650 JQ519546 JQ519631 (missing) KC213187
  Pseudofoenus sp. GQ410637 GQ374744 GQ374651 JQ519547 JQ519632 KC213096 KC213188
Ichneumonoidea          

 Braconidae
Aleiodes terminalis

Cresson, A.

dissector (Nees)
GQ410603 GQ374710 EF115472 JQ519548 JQ519633 KC213097 KC213189

  

Doryctes

erythromelas

(Brullé), Doryctes

sp.

GQ410602 GQ374709 GQ374627 JQ519549 JQ519634 KC213098 KC213190

  Rhysipolis sp. GQ410601 GQ374708 GQ374626 JQ519550 JQ519635 KC213099 KC213191

  
Wroughtonia ligator

(Say)
GQ410600 GQ374707 GQ374625 JQ519551 JQ519636 (missing) KC213192

 Ichneumonidae
Dusona egregia

(Viereck)
GQ410597 GQ374704 AF146682 JQ519552 JQ519637 KC213100 KC213193
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Table 1 (continued).

Taxa    GenBank Accession Numbers    
   18S 28S COI EF1α-F1 EF1α-F2 POL CAD

  
Labena grallator

(Say)
GQ410595 GQ374702 GQ374622 (missing) JQ519638 KC213101 KC213194

  
Lymeon orbus

(Say)
GQ410599 GQ374706 GQ374624 JQ519553 JQ519639 KC213102 KC213195

  
Pimpla aequalis

Provancher
GQ410598 GQ374705 AF146681 (missing) JQ519640 KC213103 KC213196

  
Zagryphus nasutus

(Cresson),
Zagryphus sp.

GQ410596 GQ374703 GQ374623 JQ519554 JQ519641 KC213104 KC213197

Megalyroidea          
 Megalyridae Megalyra sp. GQ410629 GQ374736 GQ374645 (missing) JQ519642 KC213105 KC213198
Mymarommatoidea         

 Mymarommatidae
Mymaromella mira

Girault
GQ410666 GQ374773 KC213240 (missing) (missing) KC213106 (missing)

  
Mymaromma

anomalum (Blood
& Kryger)

GQ410665 GQ374772 GQ374670 (missing) JQ519643 KC213107 (missing)

Orussoidea          

 Orussidae
Orussobaius

wilsoni Benson
GQ410607 GQ374714 (missing) (missing) (missing) (missing) (missing)

  
Orussus abietinus

(Scopoli)
GQ410604 GQ374711 EF032236 JQ519555 JQ519644 KC213108 KC213199

  
Orussus

occidentalis

(Cresson)
GQ410605 GQ374712 GQ374628 JQ519556 JQ519645 (missing) KC213200

Pamphilioidea          

 
Megalodontesida
e

Megalodontes

cephalotes

(Fabricius)
AY621138 EF032260 EF032227 JQ519557 JQ519646 KC213109 KC213201

 Pamphiliidae
Cephalcia cf.
abietis (Linnaeus)

GQ410587 GQ374694 EF032225 JQ519558 JQ519647 KC213110 (missing)

  
Onycholyda

amplecta

(Fabricius)
GQ410586 GQ374693 EF032223 JQ519559 JQ519648 KC213111 KC213202

Platygastroidea          
 Platygastridae Isostasius sp. GQ410644 GQ374751 KC213241 (missing) (missing) (missing) (missing)
  Platygaster sp. GQ410641 GQ374748 GQ374654 (missing) JQ519649 (missing) KC213203
  Proplatygaster sp. GQ410643 GQ374750 GQ374656 (missing) (missing) (missing) (missing)

 
Scelionidae
(s.str.)

Archaeoteleia

mellea
GQ410639 GQ374746 GQ374653 JQ519560 JQ519650 KC213112 KC213204

  Telenomus sp. GQ410642 GQ374749 GQ374655 JQ519561 JQ519651 KC213113 KC213205
Proctotrupoidea          
 Heloridae Helorus sp. GQ410653 GQ374760 GQ374663 JQ519562 JQ519652 KC213114 KC213206

 Pelecinidae
Pelecinus

polyturator (Drury)
GQ410655 GQ374762 GQ374664 JQ519563 JQ519653 KC213115 KC213207

 Proctotrupidae Austroserphus sp. GQ410654 GQ374761 (missing) JQ519564 JQ519654 KC213116 KC213208
  Exallonyx sp. GQ410656 GQ374763 (missing) JQ519565 JQ519655 KC213117 KC213209
  Proctotrupes sp. GQ410657 GQ374764 (missing) JQ519566 (missing) KC213118 (missing)

 Roproniidae
Ropronia garmani

Ashmead
GQ410659 GQ374766 GQ374665 (missing) GQ410745 KC213119 (missing)

 Vanhornidae
Vanhornia

eucnemidarum

Crawford
GQ410658 GQ374765 DQ302100 (missing) JQ519656 KC213120 KC213210

Siricoidea          
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Table 1 (continued).

Taxa    GenBank Accession Numbers    
   18S 28S COI EF1α-F1 EF1α-F2 POL CAD

 Anaxyelidae
Syntexis libocedrii

Rohwer
GQ410594 GQ374701 EF032234 (missing) JQ519657 KC213121 (missing)

 Siricidae Sirex sp. GQ410593 GQ374700 GQ374621 JQ519567 JQ519658 KC213122 KC213211

  
Tremex columba

(Linnaeus), Tremex

sp.
GQ410592 GQ374699 EF032233 JQ519568 JQ519659 KC213123 KC213212

Stephanoidea          
 Stephanidae Megischus sp. GQ410630 GQ374737 GQ374646 JQ519569 JQ519660 KC213124 KC213213

  
Schlettererius

cinctipes (Cresson)
GQ410631 GQ374738 EF032237 JQ519570 (missing) KC213125 KC213214

Tenthredinoidea          

 Argidae
Atomacera debilis

Say, Arge nigripes

(Retzius)
GQ410580 GQ374687 GQ374618 JQ519571 JQ519661 KC213126 KC213215

  
Sterictiphora

furcata (Villers)
GQ410578 GQ374685 EF032222 JQ519572 JQ519662 (missing) KC213216

 Blasticotomidae
Runaria reducta

Malaise, R. flavipes

Takeuchi
GQ410581 GQ374688 EF032212 JQ519573 JQ519663 KC213127 (missing)

 Cimbicidae
Corynis

crassicornis

(Rossi)
GQ410577 GQ374684 EF032220 JQ519574 JQ519664 KC213128 KC213217

 Diprionidae
Monoctenus

juniperi (Linnaeus)
GQ410582 GQ374689 EF032278 JQ519575 JQ519665 KC213129 KC213218

 Pergidae
Decameria similis

(Enderlein)
GQ410579 GQ374686 GQ374617 (missing) (missing) (missing) (missing)

  
Heteroperreyia

hubrichi Malaise
GQ410585 GQ374692 GQ374620 JQ519576 JQ519666 KC213130 (missing)

 Tenthredinidae
Athalia rosae

(Linnaeus)
GQ410576 GQ374683 GQ374616 JQ519577 JQ519667 KC213131 KC213219

  
Notofenusa surosa

(Konow)
GQ410584 GQ374691 (missing) JQ519578 JQ519668 KC213132 KC213220

  
Tenthredo

campestris

Linnaeus
GQ410583 GQ374690 GQ374619 (missing) JQ519669 KC213133 KC213221

Trigonaloidea          

 Trigonalidae
Orthogonalys

pulchella (Cresson)
GQ410628 GQ374735 GQ374644 JQ519579 JQ519670 KC213134 KC213222

  
Taeniogonalys

gundlachii

(Cresson)
GQ410627 GQ374734 GQ374643 JQ519580 JQ519671 KC213135 KC213223

Vespoidea          

 Bradynobaenidae
Chyphotes

mellipes (Blake),
Chyphotes sp.

AY703485 AY703552 DQ353285 JQ519581 JQ519672 KC213136 KC213224

 Formicidae
Formica moki

Wheeler, Formica

sp.
AY703493 AY703560 AF398151 JQ519582 JQ519673 (missing) KC213225

  
Myrmica tahoensis

Weber
AY703495 AY703562 DQ353360 AY363040 (missing) (missing) (missing)

  
Paraponera clavata

(Fabricius)
AY703489 AY703556 GQ374640 JQ519583 JQ519674 KC213137 KC213226

The Hymenopteran Tree of Life

PLOS ONE | www.plosone.org 8 August 2013 | Volume 8 | Issue 8 | e69344



datasets (43 ingroup taxa), using an R script [32] that was
based on the Ape package [33].

Phylogenetic analyses
We performed a number of different Bayesian analyses on

parts of the dataset in order to discern the sources of different
signals and conflict (Table 3). These analyses include two
different alignment options for the ribosomal RNA genes (18S
and 28S), molecular-only and total-evidence analyses which
included the morphological partition, analyses of the ribosomal
and protein-coding genes separately, in the latter case
including or excluding third codon positions (third codon
positions of CO1 were always excluded), and finally single-

gene analyses. The protein-coding genes were also analyzed
after translation into amino acids and applying a reversible-
jump algorithm to integrate over the fixed-rate amino-acid
models implemented in MrBayes. The data matrices and
associated consensus trees of all analyses are deposited on
TreeBase (URL for reviewers: http://purl.org/phylo/treebase/
phylows/study/TB2:S13902?x-access-
code=44421680b40bc7867da8bbe7cece2e9c&format=html).

All analyses were performed in MrBayes 3.2 [31]. Where
applicable, data were partitioned into genes and into first and
second versus third codon positions, with substitution models
unlinked across partitions. We used model jumping to integrate
over the GTR model subspace (“nst=mixed” option in MrBayes)
and modeled among-site rate variation with a four-category

Table 1 (continued).

Taxa    GenBank Accession Numbers    
   18S 28S COI EF1α-F1 EF1α-F2 POL CAD

 Mutillidae
Dasymutilla

aureola (Cresson),
D. vesta (Cresson)

GQ410621 GQ374728 EU567203 JQ519584 JQ519675 KC213138 KC213227

 Pompilidae
Aporus niger

(Cresson)
GQ410615 GQ374722 GQ374636 JQ519585 JQ519676 KC213139 KC213228

 
Rhopalosomatida
e

Rhopalosoma

nearcticum Brues
GQ410617 GQ374724 GQ374638 JQ519586 JQ519677 KC213140 KC213229

 Sapygidae
Sapyga pumila

Cresson
GQ410612 GQ374719 GQ374634 JQ519587 JQ519678 KC213141 KC213230

 Scoliidae
Scolia verticalis

Fabricius
EF012932 EF013060 GQ374641 JQ519588 JQ519679 KC213142 KC213231

 Tiphiidae
Colocistis cf.
sulcatus (M. & K.),
Brachycistis sp.

GQ410623 GQ374730 KC213242 (missing) (missing) KC213143 KC213232

 Vespidae
Metapolybia

cingulata

(Fabricius)
GQ410613 GQ374720 GQ374635 JQ519589 JQ519680 KC213144 KC213233

Xiphydrioidea          

 Xiphydriidae
Derecyrta circularis

Smith
GQ410591 GQ374698 (missing) (missing) (missing) (missing) (missing)

  
Xiphydria

prolongata

(Geoffroy)
GQ410590 GQ374697 EF032235 JQ519590 JQ519681 KC213145 KC213234

Xyeloidea          

 Xyelidae
Macroxyela

ferruginea (Say)
GQ410574 GQ374681 EF032211 JQ519591 JQ519682 KC213146 KC213235

  
Xyela julii

(Brebisson)
GQ410575 GQ374682 EF032210 JQ519592 JQ519683 KC213147 KC213236

†is a combination of AY654456, AY654457, and AY654522.
a Composite taxa comprised of sequences from more than one taxons follows: Corduliidae1: Somatochlora graeseri Selys2, Somatochlora alpestris Selys; Coenagrionidae3:
Erythromma najas Hansemann4, Enallagma aspersum (Hagen); Calopterygidae5: Mnais pruinosa Selys; Spongiphoridae6: Auchenomus forcipatus Ramamurthi;
Forficulidae7: Forficula auricularia L.; Thripidae8: Frankliniella sp.9, Thrips sp.; Phlaeothripidae10: Kladothrips nicolsoni McLeish, Chapman & Mound11; Lygus hesperus

Knight; Phymatidae12: Phymata sp. (D1-6); Miridae13: Lygus elisus (Van Duzee); Cixiidae14: Pintalia alta Osborn (D7-10); Reduviidae15: Triatoma matogrossensis Leite &
Barbosa; Coreidae16: Anacanthocoris striicornis (Scott); Aphididae17: Acyrthosiphon pisum Harris; Hemerobiidae18: Hemerobius sp.; Mantispidae19: Ditaxis biseriata

(Westwood); Chrysopidae20: Chrysopa perla (L.)21, Chrysoperla nipponensis (Okamoto); Sialidae22: Sialis sp.; Corydalidae23: Nigronia fasciatus (Walker)24; Protohermes

grandis (Thunberg); Lepiceridae25: Lepicerus inaequalis Motschulsky; Sphaeriusidae26: Sphaerius sp.; Hydroscaphidae27: Hydroscapha natans LeConte; Cupedidae28:
Prolixocupes lobiceps (LeConte) (18S); 29P. lobiceps, D2-D5 (GU591995) and Ommatidae30: Tetraphalerus bruchi Heller, D1 and D6-D10 (Maddison BToL, not yet
deposited), and Cupedidae31: Priacma serrata LeConte32; Tenomerga sp.
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gamma distribution and a proportion of invariable sites. The
morphology partition was modeled using the standard discrete
model [34], a “variable” ascertainment bias, and a four-
category gamma distribution to model among-character rate

Table 2. Data properties.

Gene/partition #bp #var #pars GC% Stationarity
18S1 2,027/2,310 959/1,003 659/610 50.0% p>0.05
28S1 5418/10,557 3486/4,456 2,279/1,938 55.2% p<0.001
CAD12 658 360 284 42.2% p>0.05
CAD3 330 321 316 48.3% p<0.001
POL 12 535 154 84 43.8% p>0.05
POL 3 268 265 259 45.3% p<0.001
EFF1 12 695 220 119 48.5% p>0.05
EFF1 3 348 338 338 61.6% p<0.001
EFF2 12 695 221 132 49.2% p>0.05
EFF2 3 348 337 335 55.5% p<0.001
CO1 12 526 324 264 38.0% p<0.001
CO1 3 263 262 262 10.1% p<0.001
Morphology 391 391 387   
Total12 12,111/17,533 7,247/8,261 5,331/4,941 49.6% p<0.1
Total
analyzed13

10,554/15,976 5,724/6,738 3,821/3,431 50.4% p<0.001

1 Values for the ribosomal RNA are given both for the MAFFT and the BAli-Phy
alignments. Unaligned sequences vary a lot in length between taxa, but are about
1,400 bp for 18S and about 3,000 for 28S.
2 molecular data combined, before exclusion of the third codon positions, without
morphology
3 molecular data combined, after exclusion of the third codon positions, without
morphology

variation. For each analysis, we ran four independent runs of
four chains each until they had reached topological
convergence (ASDSF < 0.05, preferably lower, with 25% of
samples discarded as burn-in). In the case of the single-gene
analyses of the EF1-α copies, we ran 100 million generations,
but ASDSF values remained at about 0.095. In order to capture
the uncertainty that might arise through a lack of convergence
of the MCMC in these and also in all the other analyses, we
scanned the MrBayes output for bipartition frequencies with a
standard deviation larger than 0.1 between runs. The
corresponding support values are preceded in each tree figure
by a question mark, as they might not have been estimated
accurately. Samples of all substitution model parameters were
adequate in all runs, as judged from the PSRF values being
close to 1.0 and effective sample sizes of (usually much) more
than 200. In the single-gene analysis of CAD, the outgroup
taxa were recovered within Hymenoptera. In order to obtain
meaningful signal from this data partition, we repeated the
analysis with all outgroups removed, which strongly improved
topology convergence.

Although we focus on the Bayesian analyses, we also
performed maximum likelihood (ML) analyses for comparison.
These analyses were conducted on the combined molecular
data and the total-evidence dataset, each under both alignment
strategies for the ribosomal partitions. We obtained an estimate
for the maximum-likelihood tree from RAxML [35] under a
partitioned GTR model for the molecular and the Mk model [34]
for the morphological partitions, respectively. To assess
support, we performed 1000 bootstrap replicates.

Figure 1.  Saturation plots of the different genes and codon positions.  Uncorrected p-distances are shown on the y-axis, while
the x-axis represents the pairwise distances as inferred on the tree recovered from the single-gene analyses. “CO1 12” indicates the
combined first and second codon position of the CO1 gene, and so forth.
doi: 10.1371/journal.pone.0069344.g001
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Rogue taxa identification
We used a new algorithm to search for rogue taxa, i.e., taxa

that are highly inconsistent in their phylogenetic placement [36]
in our set of Bayesian trees. The algorithm aims to optimize the
relative improvement in clade support achieved by removing
single or groups of taxa [37]. As input, we used 1,000 evenly
spaced trees from the post-burnin phase of the MrBayes tree
sets. The program was accessed via the webserver at http://
exelixis-lab.org/roguenarok.html under the majority-rule
threshold, optimizing overall support, and using maximum
dropset sizes of two, three and ten taxa. In all cases, these
three dropset sizes led to the same rogue taxa being identified.
Rogue taxa associated with a raw improvement (sum of
increase in support values) of at least 0.5 (Table 3) were
excluded and support values of the consensus tree re-
calculated. On the tree graphs, we indicate these new values
for all nodes except those directly below the rogue taxon, which
show the original value. Rogues (or groups of rogues) are
indicated by dashed branches.

Results

Alignment and analysis of ribosomal RNA
The MAFFT runs resulted in the shortest alignments, 2027

bp and 5,418 bp for 18S and 28S, respectively. The BAli-Phy
alignments are much longer, i.e. 2310 bp and 10,557 bp. The

harmonic means of the likelihoods of the Bayesian tree
samples retrieved from these alignments (treating gaps as
missing data) reflect the alignment lengths, with the longer
BAli-Phy alignment reaching a much higher likelihood than the
shorter MAFFT alignments (lnL values of -119,599 and
-106,394 for the MAFFT and BAli-Phy alignments,
respectively). Congruence with the trees retrieved from the
protein-coding genes, from the total-evidence analysis that
included the BAli-Phy alignment, and even from the total-
evidence analysis based on the MAFFT alignment is higher for
the BAli-Phy than for the MAFFT alignment (Table 4).

The consensus tree retrieved from the rRNA data based on
the MAFFT alignment is provided in Figure 2, together with
support values from the BAli-Phy alignment. Despite the very
different alignment approaches and resulting alignment
lengths, the consensus trees do not differ much, but the
support values for the MAFFT alignment are usually lower.
Interestingly, differences between alignment approaches
concern some of the relationships which also differed between
the by-eye and secondary structure alignment in the Heraty et
al. study [16], i.e. the rooting of the hymenopteran tree and the
placement of Orussoidea. Independent of alignment strategy,
the rRNA tree is only poorly resolved around the deeper nodes,
in contrast to the results from a similar number of base pairs of
protein-coding data.

Table 3. Overview of phylogenetic analyses.

Analysis Alignment of rRNA Data included nGen, ASDSF (ASDSF-rogue)1 Rogue taxa excluded2

Total evidence BAli-Phy BAli-Phy All3, incl. morphology 10M, 0.021 (N/A) (none)

Total evidence MAFFT MAFFT All3, incl. morphology 20M, 0.033 (0.031)
Hemiptera, Dermaptera,
Tiphiidae, Scolebythus,

Mymaromma, Mymaromella

Molecular BAli-Phy BAli-Phy Molecular data3 20M, 0.014 (N/A) (none)

Molecular MAFFT MAFFT Molecular data3 30M, 0.014 (0.013)
Coccobius, Scolia, Mymaromma,

Mymaromella, Cephalonomia,

Metapolybia, Chrysis

rRNA BAli-Phy 18S, 28S 10M, 0.029 (none)

rRNA MAFFT 18S, 28S 10M, 0.029 (0.027)
Megalodontes, Thysanoptera,
Hemiptera

Protein coding 12 n/a
CAD3, POL3, EF1α-F13, EF1α-
F13, CO13

25M, 0.036 (0.022)

Notofenusa, Mymaromma, Pison,

Chyphotes, Diplolepis,

Myrmecopterina, Rhopalosoma,

Ampulex

Protein coding 123 n/a
CAD, POL, EF1α-F1, EF1α-F1,
CO13

50M, 0.040 (0.037) Hesperapis, Megalyra, Psilocharis

Single gene: CAD n/a CAD 10M, 0.019 (0.012) Australomymar, Myrmecopterina

Single gene: POL n/a POL 20M, 0.018 n/a
Single gene: EF1α-F1 n/a EF1α-F1 100M, 0.098 n/a
Single gene: EF1α-F2 n/a EF1α-F2 100M, 0.093 n/a
Single gene: CO1 n/a CO13 20M, 0.013 n/a
1 Number of generations run, average standard deviation of split frequencies ASDSF, before and (in brackets) after removal of the rogue taxa.
2 Rogue taxa as identified by RogueNaRok, in descending order of impact according to the raw improvement of support after removal; taxa with at least 0.5 raw
improvements are given.
3 Third codon position of protein-coding genes excluded from the analyses

The Hymenopteran Tree of Life

PLOS ONE | www.plosone.org 11 August 2013 | Volume 8 | Issue 8 | e69344

http://exelixis-lab.org/roguenarok.html
http://exelixis-lab.org/roguenarok.html


Phylogeny of Hymenoptera as inferred from protein-
coding genes

Figure 3 shows the tree retrieved from first and second
codon positions of the protein-coding genes, along with support
values obtained when including third codon positions of the
nuclear genes (but not of CO1). The symphytan grade is well
resolved, with maximal support on most of the nodes, and with
Orussoidea placed firmly as the sister group of Apocrita. Within
Apocrita, the Proctotrupomorpha, Ichneumonoidea and
(Evaniomorpha + Aculeata) clades are recovered, although
only the former two have high support. The relationships
among these three are unresolved. In general, superfamilies
are recovered, with the exception of paraphyletic Xyeloidea,
Evanioidea, Chrysidoidea, Vespoidea, and Platygastroidea.
The Xyeloidea are however monophyletic both when including
the third codon positions and when analyzing the data as
amino acids. As with the rRNA data, resolution is rather low
among the evaniomorph superfamilies and within Aculeata.
Mymaromma, the only representative of the enigmatic
Mymarommatoidea, has an incomplete coverage in terms of
gene sampling (Table 1). It was identified as a rogue taxon,
appearing in different places in the Bayesian tree sample. In
the consensus tree, it ended up within Ichneumonoidea, but
with low support, and sitting on a very long branch.

Most conflicts with the rRNA tree are weakly supported
and/or in areas of the tree which are poorly resolved in both
analyses, e.g. the relationships within Evaniomorpha, the
placement of Ichneumonoidea and Mymarommatoidea, and the
monophyly of Diaprioidea. A notable difference is the sister
group of Aculeata, which is the Trigonaloidea + Megalyroidea
clade according to the rRNA tree and Evaniidae or
Stephanoidea according to the analysis of the protein-coding
genes, depending on whether third codon positions were
excluded or included.

Table 4. Resolution and congruence achieved by single
partitions.

Partition Resolution1 TE MAFFT2 TE BAli-Phy2 Protein coding
rRNA MAFFT 95% 0.287 0.264 0.309
rRNA BAli-Phy 95% 0.272 0.221 0.261
CAD 91% 0.339 0.329 0.207
EFF1 79% 0.434 0.440 0.404
EFF2 67% 0.403 0.416 0.419
POL 77% 0.438 0.458 0.415
CO1 74% 0.384 0.381 0.358
Morphology 91% 0.292 0.298 0.362

The Bayesian tree samples obtained from single data partitions are compared to
the total-evidence and protein-coding trees using the average standard deviation of
split frequencies as a measure of topological distance.
1 Resolution of the respective consensus tree after reduction to 43 ingroup taxa
present in each dataset, given as the percentage of nodes that were resolved.
2 Total-evidence trees

Combined molecular results and total-evidence results
The Bayesian total-evidence tree (molecular and

morphological data combined) based on the BAli-Phy
alignment is given in Figures 4 and 5, including support values
from the total-evidence analysis based on the MAFFT-aligned
rRNA sequences, and from analogous analyses of the
molecular data partition only. The tree also includes symbols
summarizing the results from the rRNA data and the protein-
coding genes when analyzed separately. Most of the deeper
nodes and well-established groupings like the Holometabola,
Apocrita, and Aculeata are well supported. When ignoring the
uncertain positions of Stephanoidea and Ceraphronoidea, the
three large groups within Apocrita — the Ichneumonoidea,
Proctotrupomorpha and, with less support, (Evaniomorpha +
Aculeata) — are also corroborated. Although most of the
proposed superfamilies are recovered as monophyletic, usually
with high support, there are several exceptions. First, the most
basal superfamily Xyeloidea is paraphyletic, with Macroxyela
more closely related to the remainder of Hymenoptera.
Second, the recently proposed Diaprioidea — including
Diapriidae, Maamingidae and Monomachidae — are not
supported, although the evidence against its monophyly is
weak. Finally, relationships within Aculeata are unstable, and
neither Chrysidoidea nor Vespoidea are recovered.

Comparing the total-evidence topology, which included
morphological data, to the phylogeny obtained from the
molecular data alone, there is considerable congruence, but
also two areas where the morphological data have the power to
change the molecular results (Figure 6). First, the grade of
woodwasps (Siricoidea, Xiphydrioidea and Cephoidea) leading
to the Vespina (Apocrita + Orussoidea) is fully reversed in the
two analyses, with the sequence Cephoidea – Siricoidea –
Xiphydrioidea – Vespina supported by the former, and
Xiphydrioidea – Siricoidea – Cephoidea – Vespina by the latter.
The molecular signal is fairly strong in the BAli-Phy alignment
but weaker in the MAFFT alignment, showing that there is
some alignment-dependent signal from the ribosomal
sequences. The second example concerns the positions of
Stephanoidea and Ceraphronoidea within the Apocrita but
involves relationships that are less well supported.

Maximum likelihood estimates based on both the combined
molecular and the total-evidence datasets are given in Figures
S1 and S2, with bootstrap support values obtained under both
the MAFFT and the BAli-Phy alignment approaches for rRNA.
The ML trees are similar to those obtained from the Bayesian
analyses, but differ with respect to the placement of the
hymenopteran root, which is between Tenthredinoidea and the
remaining hymenopterans in the total-evidence and between a
monophyletic Xyeloidea + Tenthredinoidea + Pamphilioidea
and Unicalcarida in the molecular analysis. Furthermore, the
total-evidence analyses did not recover a monophyletic
Evaniomorpha, but the conflicting nodes were associated with
very low bootstrap support.

Phylogenetic signal in different data partitions
In order to assess the contribution of the different genes and

of morphology, we investigate patterns of variation, resolution
of the single-gene or single-partition consensus trees, and their
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Figure 2.  Bayesian tree recovered from the analysis of the two ribosomal genes under the MAFFT alignment.  Support
values next to the nodes are Bayesian posterior probabilities obtained from the MAFFT and the BAli-Phy alignments, respectively.
Asterisks stand for maximal support. Taxa identified as rogues are shown on dashed branches. Very long branches leading to some
of the outgroup taxa were compressed in this figure.
doi: 10.1371/journal.pone.0069344.g002
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Figure 3.  Bayesian tree recovered from the analysis of first and second codon positions of the combined protein-coding
genes.  Support values next to the nodes are Bayesian posterior probabilities obtained from first and second and from all three
codon positions of the nuclear genes, respectively. Asterisks stand for maximal support. Taxa identified as rogues are shown on
dashed branches.
doi: 10.1371/journal.pone.0069344.g003
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Figure 4.  Outgroups and symphytan part of the Bayesian total-evidence tree obtained from the BAli-Phy based
alignment.  Support values next to nodes indicate the support obtained under either of the two alignment approaches (BAli-Phy and
MAFFT) and with morphology included (total evidence, TE), versus the molecular data only, again under both alignment
approaches. Asterisks represent maximal support. Symbols indicate support from partitions of the molecular data (see legend).
Superfamilies that were not recovered as monophyletic are shown in grey.
doi: 10.1371/journal.pone.0069344.g004
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Figure 5.  Vespina part of the Bayesian total-evidence tree obtained from the BAli-Phy based alignment.  See legend of
Figure 4 for details.
doi: 10.1371/journal.pone.0069344.g005
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congruence with trees derived from other data partitions. Table
2 summarizes some basic properties of the molecular data by
gene and by gene partitions. The ribosomal genes and the third
codon positions of the two EF1-α copies showed no to
moderate GC-biases (up to 61.5% in the third codon positions
of EF1-α F1), whereas CO1 had moderate to strong AT bias
(62% and 90% for first plus second and third codon positions,
respectively), as is the rule for mitochondrial genes in
Hymenoptera [38]. All third codon positions of the protein
coding genes are heavily saturated, while there appears to be
a favorable signal-to-noise ratio in the ribosomal genes and at
first and second codon positions of CAD and CO1 (Figure 1).
The first and second codon positions of the other three genes
(POL, EF1-α F1, EF1-α F2) show comparatively little variation.

Resolution of the single-partition consensus trees varies
strongly (employing the majority rule criterion). Table 4 shows
the percentage of resolved nodes after reducing each tree to
the 43 ingroup taxa common to all datasets. The rRNA data
resolved 95% of nodes irrespective of alignment approach, and
morphology and the CAD gene each reached 91%. The other
single genes lag behind at 67% to 79%. The ranking of
partitions is very similar when not only the 43 completely
sampled ingroup taxa, but all taxa available per partition are
included, with the difference that CAD now outperforms the
MAFFT-aligned rRNA data. A similar picture appears when
comparing the topological distances between trees obtained
from the single-gene analyses to the protein-coding and total-
evidence trees (Table 4). The rRNA data and the CAD gene

consistently rank highest, followed by morphology and CO1,
while POL and the two EF1-α copies result in more conflicting
topologies [22].

Discussion

Objective and semi-objective alignments of ribosomal
DNA sequences

Arguably the best approach to phylogenetic inference based
on ribosomal sequences is to analyze unaligned sequences
directly. There are several methods that simultaneously
estimate alignment and phylogeny: POY in the parsimony
framework [39], and ALIFRITZ [40], BAli-Phy [19] and Luntner
et al. [18] in a Bayesian setting. These approaches make use
of the information present in gaps when reconstructing the
phylogeny, which can greatly improve phylogenetic inference
[41]. The Bayesian approaches are particularly compelling in
that they integrate over alignment uncertainty when
reconstructing phylogenetic relationships. Unfortunately, they
are still too computationally complex and converge too slowly
to be applicable to most empirical datasets.

In addition to the entirely objective alignment approach using
MAFFT, we attempted Bayesian analysis of our unaligned
data. However, we had to split our dataset both by taxa and
sites in order to reach even marginally acceptable convergence
on topology and the parameters of the indel model. Merging
the MAP sub-alignments and analyzing the composite matrix in

Figure 6.  Simplified total-evidence tree based on the combined molecular and morphological data contrasted with the tree
obtained from the molecular data alone.  Support values are in both cases given for both the BAli-Phy-based and the MAFFT
alignment of the rRNA genes, with asterisks representing maximal support. Taxa which assume conflicting positions are shown in
grey.
doi: 10.1371/journal.pone.0069344.g006
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a traditional two-step procedure meant we had to forego the
possibility of using the information in the indels and integrating
over alignment uncertainty. Nonetheless, our partitioned
Bayesian method compared favorably to the MAFFT alignment
method, as indicated by higher support values and higher
congruence with the protein-coding tree.

Although largely objective, our partitioned Bayesian method
does involve human decisions on how to decompose the
alignment by taxa and by sites. Splitting by taxa has the
greatest potential to bias the results. Difficult sequence
positions might be aligned in a different manner in the different
sub-problems, and the merging of the sub-alignments by OPAL
[28] might not be able to resolve such conflict and thus lead to
an exaggerated alignment similarity between taxa that were
aligned in the same batch. We minimized such problems by
basing the decomposition on results from the analysis of the
protein-coding genes. We also searched the final results for
potential alignment-induced biases. Nodes that might be
involved were at the bases of i) all Hymenoptera, ii) Apocrita,
iii) Proctotrupomorpha, and iv) all non-proctotrupomorph
apocritans. The first three nodes are present in both the trees
derived from the BAli-Phy aligned sequences and those
resulting from the MAFFT alignment. The fourth group was not
recovered in either analysis. In fact, the grouping of
Ichneumonoidea with Proctotrupomorpha instead of with
Evaniomorpha plus Aculeata, across alignment decomposition
lines, was even retrieved with higher support in the BAli-Phy
than in the MAFFT analyses (Figure 2). The apparent absence
of decomposition-induced artifacts, the fact that clade support
values were almost always higher in the BAli-Phy than in the
MAFFT analysis, and the higher congruence of the tree sample
obtained from the BAli-Phy alignment with the trees from the
protein-coding genes indicate that splitting the alignment
problem based on a few explicit and well-grounded
assumptions about relationships may be a good general
strategy for improving alignment quality.

Several candidate alignment artifacts were identified based
on a comparison of the by-eye and secondary-structure
alignments of Heraty et al. [16], and by comparison with the
results from the protein-coding sequences. These include the
monophyly of Xyeloidea and Evanioidea, and the placement of
Orussoidea among Evaniomorpha. If they were artifacts of a
subjective alignment in the previous analyses of ribosomal
data, they should disappear in our analyses of objective
alignments. However, all these signals were clearly present in
our re-analyses of the ribosomal data (Figure 2), even though
the support values are generally lower, indicating that
subjective bias has possibly augmented these signals.

Implications for the hymenopteran tree of life
Our analyses recover a large part of the higher-level

phylogeny of Hymenoptera with high support and strong
corroboration from independent data sources. Many of these
relationships have been uncontroversial at least in the more
recent past, e.g. the monophyly of the Unicalcarida
(Hymenoptera without Xyeloidea, Tenthredinoidea, and
Pamphilioidea) [42], the grouping of Orussoidea with Apocrita,
the monophyly of Aculeata and Proctotrupomorpha, and of

most of the superfamilies as outlined in Sharkey [12]. More
recent suggestions that we could corroborate here with
independent protein-coding data include Trigonaloidea +
Megalyroidea, core Proctotrupomorpha (Proctotrupomorpha
excluding Cynipoidea and Platygastroidea), core
Proctotrupoidea (Proctotrupoidea without Diaprioidea), and
finally the placement of Aculeata within a paraphyletic
Evaniomorpha. These results appear to be robust and will
probably pass the test of time. As they were discussed at some
length in a previous study [17], we will not go into further detail
here, but only discuss equivocal relationships.

Several parts of the hymenopteran tree remain unresolved
and most of these unstable areas include taxa that were also
identified as rogue taxa in one or more of the analyses. Rogues
can arise due to several reasons, e.g., insufficient gene
coverage or particularly long branches. While on average, the
twenty taxa identified as rogues did not have a lower number of
genes sampled (one missing gene being the average both of
the whole dataset and among the rogue taxa), missing data
might still be behind the formation of some of the rogues (e.g.,
Mymarommatoidea, see below). Most of the controversial
relationships were also ambiguous in earlier analyses, and
might represent difficult phylogenetic histories like rapid
radiations (e.g., Aculeata, see below). Figure 7 summarizes the
areas of conflict or uncertainty, and we here give a short
summary of the evidence for conflicting hypotheses.

The three at the root.  It has been recognized early on that
Xyeloidea, Tenthredinoidea and Pamphilioidea are the three
superfamilies closest to the root of Hymenoptera [13,14,42].
However, the relationships among these superfamilies are not
resolved. The three competing hypotheses that result from the
current and recent analyses are shown in Figure 7a. Most of
the controversy boils down to the uncertain placement of the
root of the order Hymenoptera – either within Xyeloidea,
between Xyeloidea and the remaining Hymenoptera, or
between (Xyeloidea + Tenthredinoidea) and the rest.
Undoubtedly, the problem is caused to a large extent by the
deep roots of the order that probably date back to the
Carboniferous [3], in combination with the long branches
connecting it to the outgroups [43,44]. As Hymenoptera are
probably the sister group to all other holometabolous insects
[45,46], only a much denser taxon sampling of both
holometabolan and hemimetabolan outgroups could help
improve the reconstruction of ancestral sequences, and hence
help resolve these deep relationships. Unfortunately, such an
approach is limited by the fact that extant outgroups are placed
in isolated crown groups of their own and cannot break down
the long branch leading to Hymenoptera.

In addition to the rooting problem, it is somewhat unclear
whether Tenthredinoidea or Pamphilioidea are more closely
related to the Unicalcarida. The former hypothesis was found in
the Sharkey et al. [17] total-evidence analysis, but with low
support, and in the CAD single-gene analysis, but again with a
posterior probability of only 0.53. In contrast, the combined
protein-coding genes show maximum support for
Pamphilioidea as the sister to Unicalcarida. Morphological
evidence is also somewhat equivocal about the placement of
the hymenopteran root. Putative synapomorphies that could
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Figure 7.  Schematic representation of controversial relationships in high-level phylogenetics of Hymenoptera.  Numbers
next to nodes and superscripts in the text indicate nodes for which the consensus trees obtained in specific analyses are in conflict
with the diagram (see these for details). Numbers next to taxon names stand for non-monophyly of the group. Besides hypotheses
derived from our data, we also show selected results from the literature. If a dataset or publication does not appear in one of the
cases, then it did not provide any resolution for the relationships in question. In the Heraty et al. (2011) analysis, we refer to the by-
eye alignment.
doi: 10.1371/journal.pone.0069344.g007
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support a monophyletic Xyeloidea can be found among the
mouthparts, e.g. the labral brush, asymmetric mandibles and
elongate maxillary palpi [47]. These features are associated
with pollen feeding in the adults and are unique within
Hymenoptera. In contrast, the long, compound third segment of
the antenna which results from the fusion of several
flagellomeres might represent a symplesiomorphy, as it is also
found in many early fossil hymenopterans and in the
tenthredinoid families Blasticotomidae and Argidae [2].

The woodwasp grade.  The remaining symphytan
superfamilies in most analyses form a grade towards Vespina
(Orussoidea + Apocrita). The sequence in which they branch
off is strongly dependent on the dataset and constitutes one of
the two strong conflicts between the morphological and
molecular data partitions (Figures 6, 7b). Morphological
evidence supporting Xiphydrioidea as sister to Vespina is
rather strong; the most convincing proposed synapomorphies
for this relationship include a number of characters in the
dorsal part of the thorax, e.g., the presence of a transscutal
articulation, the reduction of the posterodorsal part of the
metapleuron (possibly an incipient step in the formation of the
wasp waist in Apocrita), and the loss of a number of thoracic
muscles [15]. However, none of the single-gene or various
combined molecular datasets supported this relationship, and
the combined molecular, protein-coding and CAD single-gene
analysis are strongly against. Nevertheless, the signal in the
morphological partition is strong enough to resolve this conflict
in favor of morphology in the total-evidence analyses.

Placement of Stephanoidea and Ceraphronoidea.  These
two groups are notoriously difficult to place. In the total-
evidence analyses, Stephanoidea is placed as the sister-group
of all remaining apocritans, a placement that is supported by
several morphological, in particular mesosomal, characters
[15]. Again, this conflicts with the protein-coding genes, which
place stephanids within Evaniomorpha and potentially as the
sister clade to Aculeata. The rRNA data do not provide stable
resolution around the nodes in question. The situation is
complicated by Ceraphronoidea, which assume very differing
positions in different analyses, grouping alternatively with
Stephanoidea, with Ichneumonoidea, or as sister to
Ichneumonoidea plus Proctotrupomorpha. A sister-group
relationship between Ceraphronoidea and Megalyroidea, as
recovered in Sharkey et al. [17], was never observed here.
Morphology does not provide many reliable characters due to
the small size of these wasps. Confidence about the placement
of Stephanoidea and Ceraphronoidea will depend on additional
data, and will help to refine the status of the highly contested
Evaniomorpha.

Placement of Mymarommatoidea.  The placement of this
family is complicated by their small size, associated reduction
of many otherwise informative morphological character
systems, and risk of homoplasy in other character states
associated with size. The gene sampling for this taxon was not
complete in our analysis, and they came out as a rogue taxon
on a very long branch in the protein-coding tree. The rRNA
data recover them as the sister group of Diaprioidea plus
Chalcidoidea, but the support for this placement disappears in
the combined molecular analysis. Including morphology added

support for the common interpretation of mymarommatids as
the sister group of Chalcidoidea [14,15,17,48], but this was
sensitive to the alignment approach. More molecular data is
needed to resolve this conflict, especially because of the
limitations inherent in the morphological data for these tiny
wasps.

The sister group of Aculeata.  Aculeata are firmly placed
within a paraphyletic Evaniomorpha (see next paragraph) in all
our analyses. A similar placement was recovered in previous
analyses [16,17], and contradicts early hypotheses of a sister-
group relationship between Aculeata and Ichnemonoidea
[13,14]. Within Evaniomorpha, however, the relationships are
highly unstable, and the sister-group of aculeates remains
unclear. Although there is some indication that the strongly
supported Trigonaloidea + Megalyroidea clade is sister to
aculeates, support is weak, alignment-dependent, and
contradicted by the analysis of the concatenated protein-coding
genes, which favored either Stephanoidea or Evaniidae as the
sister group. Given the low resolution both among evaniomorph
superfamilies and within Aculeata, a denser taxon sampling
within these groups is probably needed to clarify this question.

Evaniomorpha.  The concept of Evaniomorpha, as originally
proposed by Rasnitsyn [13], included the superfamilies
Stephanoidea, Ceraphronoidea, Megalyroidea, Trigonaloidea
and Evanioidea, while excluding Aculeata. The morphological
and fossil evidence supporting this somewhat heterogeneous
assemblage has always been weak, and Rasnitsyn himself
recently proposed that the Evaniomorpha be restricted to the
Evanioidea [49]. The circumscription of Evaniomorpha remains
unclear even after our analyses, especially with respect to
Stephanoidea and Ceraphronoidea, but it should definitely be
revised to include Aculeata if it is retained as a concept
defining a major apocritan lineage.

Non-monophyletic superfamilies.  The superfamilies not
recovered as monophyletic in the total-evidence analyses are
the following: Xyeloidea, Chrysidoidea, Vespoidea and
Diaprioidea. While the Xyeloidea are discussed above, the
remaining superfamilies deserve further attention. There are
several rather convincing morphological synapomorphies for
Chrysidoidea, e.g., the subdivision of the second valvifer of the
ovipositor into two articulating parts [50], and their non-
monophyly was in fact not strongly supported; rather, the
relationships among aculeate families are very poorly resolved
in all our analyses, and a much denser taxon and gene
sampling is obviously required to address these relationships.
The same is true for Vespoidea, although it has been
hypothesized previously that they are paraphyletic with respect
to Apoidea [7,51].

The superfamily Diaprioidea was suggested by Sharkey [12]
to include Diapriidae, Maamingidae and Monomachidae, based
on an earlier molecular analysis [52]. While not retrieved in the
total-evidence analysis, which instead suggested paraphily with
respect to Mymarommatoidea and Chalcidoidea (but with very
low support), Diaprioidea are recovered in the CAD single-
gene, the protein-coding, and the combined molecular
analyses.

Although the Evanioidea were recovered as monophyletic in
the total-evidence and combined molecular tree, they were split
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into Gasteruptiidae + Aulacidae versus Evaniidae in the
protein-coding and CAD single-gene analyses. This
superfamily may thus deserve more attention, especially given
the weak support from morphology, the most striking putative
synapomorphy being the attachment of the metasoma high
above the hind coxal cavities [e.g. 13,15].

The future of hymenopteran phylogenetics
Although we present here the most comprehensive study of

higher-level hymenopteran relationships to date, many
questions of great taxonomic and evolutionary interest remain
unresolved; the search for more and better data must thus
continue. In the light of the large differences in information
content in the genes studied here, it becomes clear that data
quality can strongly influence the outcome of studies of deep-
level relationships. The performance of CAD [53] was
especially outstanding. With less than 1,000 bp, this marker
recovered a largely resolved phylogeny of Hymenoptera that
was in close agreement with the total-evidence tree. Overall,
data partitions that did not show signs of saturation and at the
same time included a relatively large number of parsimony-
informative sites consistently achieved higher congruence with
trees derived from independent and total-evidence partitions.
This is in line with recent theoretical and phylogenomic studies,
which found a connection between evolutionary rate,
saturation, and phylogenetic utility of different markers [54–58].
Data quality might thus play a very important role when it
comes to utility for phylogenetic inference, and could render it
unnecessary to accumulate huge quantities of data even (or
maybe especially) for difficult phylogenetic problems.

On the other hand, the lack of resolution in vital parts of the
hymenopteran tree as inferred here from seven genes might
simply demonstrate the limits of few-gene approaches.
Estimates of the numbers of genes necessary for reliable
phylogenetic inference depend strongly on the phylogenetic
context and the inference method, but have been suggested to
lie around 20 [43,59,60]. Gene sampling for Hymenoptera
phylogenetics has until now relied mostly on very few genes,
with two exceptions. A study of 24 expressed sequence tags
(ESTs) in 10 disparate hymenopteran taxa [61] recovered
deep-level relationships which were almost invariably
controversial and in conflict with any previous study, e.g.
Chalcidoidea placed outside Proctotrupomorpha and a sister-
group relationship between the latter and Aculeata. These
relationships are likely due to the extremely low taxonomic
coverage and potentially also to limited phylogenetic signal in
the different markers. Another analysis of phylogenomic
proportions made use of all sequence data for Hymenoptera
present in Genbank [62]. By developing a bioinformatics
pipeline that filtered the vast amount of data for genes with
compositional stationarity and defined levels of density and
taxonomic overlap, they retrieved about 80,000 sites for 1,100
taxa. The main problem with this dataset was the amount of
missing data (more than 98%). The resulting tree had very low
resolution, recovered many of the included families as para- or

polyphyletic, and placed some taxa in obviously erroneous
positions. Nevertheless, some of the superfamilies and
undisputed higher-level relationships were recovered in this
analysis, which demonstrates the potential of such an
approach.

The future of hymenopteran phylogenetics lies in datasets
that combine the advantages of each of the afore-mentioned
studies, i.e., a dense and balanced taxon sampling [63–65],
sufficiently large amounts of molecular data, a careful
assessment of the quality of this data [55,66], and appropriate
analysis methodology. Only the combination of these is likely to
resolve the remaining uncertainties in the evolutionary history
of a group that originated hundreds of million years ago and
diversified into hundreds of thousands of species.
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Table S1.  Commented table of primers used in this study.
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Figure S1.  Maximum likelihood tree recovered from the
analysis of the combined molecular data (rRNA MAFFT
aligned).
Support values next to the nodes (or after species pairs) are
bootstrap supports obtained from 1000 replicates based on
both the MAFFT and the BAli-Phy alignments, respectively.
Asterisks stand for maximal support.
(TIF)

Figure S2.  Maximum likelihood tree recovered from the
analysis of the combined molecular and morphological
data (rRNA BAli-Phy aligned).
Support values next to the nodes (or after species pairs) are
bootstrap supports obtained from 1000 replicates based on
both the BAli-Phy and the MAFFT alignments, respectively.
Asterisks stand for maximal support.
(TIF)
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