21 research outputs found

    Wetlands for wastewater treatment and subsequent recycling of treated effluent : a review

    Get PDF
    Due to water scarcity challenges around the world, it is essential to think about non-conventional water resources to address the increased demand in clean freshwater. Environmental and public health problems may result from insufficient provision of sanitation and wastewater disposal facilities. Because of this, wastewater treatment and recycling methods will be vital to provide sufficient freshwater in the coming decades, since water resources are limited and more than 70% of water are consumed for irrigation purposes. Therefore, the application of treated wastewater for agricultural irrigation has much potential, especially when incorporating the reuse of nutrients like nitrogen and phosphorous, which are essential for plant production. Among the current treatment technologies applied in urban wastewater reuse for irrigation, wetlands were concluded to be the one of the most suitable ones in terms of pollutant removal and have advantages due to both low maintenance costs and required energy. Wetland behavior and efficiency concerning wastewater treatment is mainly linked to macrophyte composition, substrate, hydrology, surface loading rate, influent feeding mode, microorganism availability, and temperature. Constructed wetlands are very effective in removing organics and suspended solids, whereas the removal of nitrogen is relatively low, but could be improved by using a combination of various types of constructed wetlands meeting the irrigation reuse standards. The removal of phosphorus is usually low, unless special media with high sorption capacity are used. Pathogen removal from wetland effluent to meet irrigation reuse standards is a challenge unless supplementary lagoons or hybrid wetland systems are used

    Swine wastewater treatment using vertical subsurface flow constructed wetland planted with Napier grass

    No full text
    This research aims to investigate the pollutant removal efficiencies in swine wastewater using a vertical subsurface flow constructed wetland (VSF CW) planted with two species of Napier grass. The grass productivities were also cultivated and compared in order to provide information for species selection. Twelve treatment units were set up with the VSF CWs planted with Giant Napier grass (Pennisetum purpureum cv. King grass) and Dwarf Napier grass (Pennisetum purpureum cv. Mott.) with 2 and 5 cm d−1 of hydraulic loading rates (HLR). Comparisons of removal efficiency and grass productivity were analyzed using Duncan's Multiple Range Test and t-test at the significant level 0.05. Both species of Napier grass performed more than 70% of removal efficiency of BOD and TKN. The VSF CW planted with Giant Napier grass at 5 cm d−1 HLR performed the highest BOD removal efficiency of 94 ± 1%, while the 2 cm d−1 HLR removed COD with efficiency of 64 ± 6%. The results also showed the effluent from all treatment units contained averages of BOD, COD, TSS, TKN and pH that followed Thailand's swine wastewater quality standard. Average fresh yields and dry yields were between 4.6 ± 0.4 to 15.2 ± 1.2 and 0.5 ± 0.1 to 2.2 ± 0.1 kg m−2, respectively. The dry yields obtained from four cutting cycles in five months of CW system operation were higher than the ones planted with a traditional method, but declined continuously after each cutting cycle. Both species of Napier grass indicated their suitability to be used in the VSF CW for swine wastewater treatment

    Occurrence, fate and risk assessment of biocides in wastewater treatment plants and aquatic environments in Thailand

    No full text
    This study investigated the occurrence and fate of 19 biocides in 8 wastewater treatment plants and receiving aquatic environments (both freshwater and estuarine systems) in Thailand. The predominant compound in wastewater and surface water was methylparaben with the maximum concentration of 15.2 mu g/L detected in the receiving river, while in sludge and sediment was triclocarban with the maximum concentration of 8.47 mu g/g in sludge. Triclosan was the main contaminants in the fish samples with the maximum concentration of 1.20 mu g/g. Similar results of biocides were found in the estuarine system in Pattaya city, with the maximum concentration of 185 ng/L in sea water for methylparaben, and 242 ng/g in estuarine sediment for triclocarban. The aqueous removal rates for the biocides ranged from 15% to 95% in average. The back estimated-usage and total estimated emission of Sigma 19 biocides in Thailand was 279 and 202 tons/year, respectively. Preliminary ecological risk assessment showed that clotrimazole and triclosan could pose high risks to aquatic organisms in the receiving aquatic environments. (C) 2019 Elsevier B.V. All rights reserved
    corecore