147 research outputs found

    Airspeed And Heading Of Autumnal Migrants Over Hawaii

    Get PDF

    The radio remnant of SN1993J: an instrumental explanation for the evolving complex structure

    Full text link
    We present simulated images of Supernova 1993J at 8.4 GHz using Very Long Baseline Interferometry (VLBI) techniques. A spherically symmetric source model is convolved with realistic uv-plane distributions, together with standard imaging procedures, to assess the extent of instrumental effects on the recovered brightness distribution. In order to facilitate direct comparisons between the simulations and published VLBI images of SN1993J, the observed uv-coverage is determined from actual VLBI observations made in the years following its discovery. The underlying source model only exhibits radial variation in its density profile, with no azimuthal dependence and, even though this model is morphologically simple, the simulated VLBI observations qualitatively reproduce many of the azimuthal features of the reported VLBI observations, such as appearance and evolution of complex azimuthal structure and apparent rotation of the shell. We demonstrate that such features are inexorably coupled to the uv-plane sampling. The brightness contrast between the peaks and the surrounding shell material are not as prominent in the simulations (which of course assume no antenna- or baseline-based amplitude or phase errors, meaning no self-calibration procedures will have incorporated any such features in models). It is conclusive that incomplete uv-plane sampling has a drastic effect on the final images for observations of this nature. Difference imaging reveals residual emission up to the 8 sigma level. Extreme care should be taken when using interferometric observations to directly infer the structure of objects such as supernovae.Comment: 14 pages, 10 figures, 2 tables, accepted for publication in MNRA

    Expanding e-MERLIN with the Goonhilly Earth Station

    Full text link
    A consortium of universities has recently been formed with the goal of using the decommissioned telecommunications infrastructure at the Goonhilly Earth Station in Cornwall, UK, for astronomical purposes. One particular goal is the introduction of one or more of the ~30-metre parabolic antennas into the existing e-MERLIN radio interferometer. This article introduces this scheme and presents some simulations which quantify the improvements that would be brought to the e-MERLIN system. These include an approximate doubling of the spatial resolution of the array, an increase in its N-S extent with strong implications for imaging the most well-studied equatorial fields, accessible to ESO facilities including ALMA. It also increases the overlap between the e-MERLIN array and the European VLBI Network. We also discuss briefly some niche science areas in which an e-MERLIN array which included a receptor at Goonhilly would be potentially world-leading, in addition to enhancing the existing potential of e-MERLIN in its role as a Square Kilometer Array pathfinder instrument.Comment: 7 pages, 3 figures, to appear in the proceedings of "Astronomy with megastructures: Joint science with the E-ELT and SKA", 10-14 May 2010, Crete, Greece (Eds: Isobel Hook, Dimitra Rigopoulou, Steve Rawlings and Aris Karastergiou

    Goonhilly: a new site for e-MERLIN and the EVN

    Full text link
    The benefits for the e-MERLIN and EVN arrays of using antennae at the satellite communication station at Goonhilly in Cornwall are discussed. The location of this site - new to astronomy - will provide an almost equal distribution of long baselines in the east-west- and north-south directions, and opens up the possibility to get significantly improved observations of equatorial fields with e-MERLIN. These additional baselines will improve the sensitivity on a set of critical spatial scales and will increase the angular resolution of e-MERLIN by a factor of two. e-MERLIN observations, including many allocated under the e-MERLIN Legacy programme, will benefit from the enhanced angular resolution and imaging capability especially for sources close to or below the celestial equator (where ESO facilities such as ALMA will operate) of including the Goonhilly telescopes. Furthermore, the baselines formed between Goonhilly and the existing stations will close the gap between the baselines of e-MERLIN and those of the European VLBI Network (EVN) and therefore enhance the legacy value of e-MERLIN datasets.Comment: 10 pages, 2 figue

    Assessing the impact of silicon nanowires on bacterial transformation and viability of Escherichia coli

    Get PDF
    We investigated the biomaterial interface between the bacteria Escherichia coli DH5α and silicon nanowire patterned surfaces. We optimised the engineering of silicon nanowire coated surfaces using metal-assisted chemical etching. Using a combination of focussed ion beam scanning electron microscopy, and cell viability and transformation assays, we found that with increasing interfacing force, cell viability decreases, as a result of increasing cell rupture. However, despite this aggressive interfacing regime, a proportion of the bacterial cell population remains viable. We found that the silicon nanowires neither resulted in complete loss of cell viability nor partial membrane disruption and corresponding DNA plasmid transformation. Critically, assay choice was observed to be important, as a reduction-based metabolic reagent was found to yield false-positive results on the silicon nanowire substrate. We discuss the implications of these results for the future design and assessment of bacteria–nanostructure interfacing experiments

    MESMER: MeerKAT Search for Molecules in the Epoch of Reionization

    Full text link
    [Abridged] Observations of molecular gas at all redshifts are critical for measuring the cosmic evolution in molecular gas density and understanding the star-formation history of the Universe. The 12CO molecule (J=1-0 transition = 115.27 GHz) is the best proxy for extragalactic H2, which is the gas reservoir from which star formation occurs, and has been detected out to z~6. Typically, redshifted high-J lines are observed at mm-wavelengths, the most commonly targeted systems exhibiting high SFRs (e.g. submm galaxies), and far-IR-bright QSOs. While the most luminous objects are the most readily observed, detections of more typical galaxies with modest SFRs are essential for completing the picture. ALMA will be revolutionary in terms of increasing the detection rate and pushing the sensitivity limit down to include such galaxies, however the limited FoV when observing at such high frequencies makes it difficult to use ALMA for studies of the large-scale structure traced out by molecular gas in galaxies. This article introduces a strategy for a systematic search for molecular gas during the EoR (z~7 and above), capitalizing on the fact that the J=1-0 transition of 12CO enters the upper bands of cm-wave instruments at high-z. The FoV advantage gained by observing at such frequencies, coupled with modern broadband correlators allows significant cosmological volumes to be probed on reasonable timescales. In this article we present an overview of our future observing programme which has been awarded 6,500 hours as one of the Large Survey Projects for MeerKAT, the forthcoming South African SKA pathfinder instrument. Its large FoV and correlator bandwidth, and high-sensitivity provide unprecedented survey speed for such work. An existing astrophysical simulation is coupled with instrumental considerations to demonstrate the feasibility of such observations and predict detection rates.Comment: 7 pages, 4 figures, to appear in the proceedings of "Astronomy with megastructures: Joint science with the E-ELT and SKA", 10-14 May 2010, Crete, Greece (Eds: Isobel Hook, Dimitra Rigopoulou, Steve Rawlings and Aris Karastergiou

    Nodal discontinuous Galerkin methods on graphics processors

    Get PDF
    Discontinuous Galerkin (DG) methods for the numerical solution of partial differential equations have enjoyed considerable success because they are both flexible and robust: They allow arbitrary unstructured geometries and easy control of accuracy without compromising simulation stability. Lately, another property of DG has been growing in importance: The majority of a DG operator is applied in an element-local way, with weak penalty-based element-to-element coupling. The resulting locality in memory access is one of the factors that enables DG to run on off-the-shelf, massively parallel graphics processors (GPUs). In addition, DG's high-order nature lets it require fewer data points per represented wavelength and hence fewer memory accesses, in exchange for higher arithmetic intensity. Both of these factors work significantly in favor of a GPU implementation of DG. Using a single US$400 Nvidia GTX 280 GPU, we accelerate a solver for Maxwell's equations on a general 3D unstructured grid by a factor of around 50 relative to a serial computation on a current-generation CPU. In many cases, our algorithms exhibit full use of the device's available memory bandwidth. Example computations achieve and surpass 200 gigaflops/s of net application-level floating point work. In this article, we describe and derive the techniques used to reach this level of performance. In addition, we present comprehensive data on the accuracy and runtime behavior of the method. (C) 2009 Elsevier Inc. All rights reserved

    Mindfulness training for depressed older adults using smartphone technology: Protocol for a fully remote precision clinical trial

    Get PDF
    BACKGROUND: Precision medicine, optimized interventions, and access to care are catchphrases for the future of behavioral treatments. Progress has been slow due to the dearth of clinical trials that optimize interventions\u27 benefits, individually tailor interventions to meet individual needs and preferences, and lead to rapid implementation after effectiveness is demonstrated. Two innovations have emerged to meet these challenges: fully remote trials and precision clinical trials. OBJECTIVE: This paper provides a detailed description of Mindful MyWay, a study designed to test online mindfulness training in older adults with depression. Consistent with the concept of fully remote trials using a smartphone app, the study requires no in-person contact and can be conducted with participants anywhere in the United States. Based upon the precision medicine framework, the study assesses participants using high-frequency assessments of symptoms, cognitive performance, and patient preferences to both understand the individualized nature of treatment response and help individually tailor the intervention. METHODS: Mindful MyWay is an open-label early-phase clinical trial for individuals 65 years and older with current depression. A smartphone app was developed to help coordinate the study, deliver the intervention, and evaluate the acceptability of the intervention, as well as predictors and outcomes of it. The curriculum for the fully remote intervention parallels the mindfulness-based stress reduction curriculum, a protocolized group-based mindfulness training that is typically provided in person. After consent and screening, participants download The Healthy Mind Lab mobile health smartphone app from the Apple App Store, allowing them to complete brief smartphone-based assessments of depressive symptoms and cognitive performance 4 times each day for 4 weeks prior to and after completing the intervention. The intervention consists of an introduction video and 10 weekly mindfulness training sessions, with the expectation to practice mindfulness at home daily. The app collects participant preference data throughout the 10-week intervention period; these high-frequency assessments identify participants\u27 individually dynamic preferences toward the goal of optimizing the intervention in future iterations. RESULTS: Participant recruitment and data collection began in March 2019. Final end point assessments will be collected in May 2022. The paper describes lessons learned regarding the critical role of early-phase testing prior to moving to a randomized trial. CONCLUSIONS: The Mindful MyWay study is an exemplar of innovative clinical trial designs that use smartphone technology in behavioral and neuropsychiatric conditions. These include fully remote studies that can recruit throughout the United States, including hard-to-access areas, and collect high-frequency data, which is ideal for idiographic assessment and individualized intervention optimization. Our findings will be used to modify our methods and inform future randomized controlled trials within a precision medicine framework. TRIAL REGISTRATION: ClinicalTrials.gov NCT03922217; https://clinicaltrials.gov/ct2/show/NCT03922217. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/39233

    Controlled dendrimersome nanoreactor system for localised hypochlorite-induced killing of bacteria

    Get PDF
    Antibiotic resistance is a serious global health problem necessitating new bactericidal approaches such as nanomedicines. Dendrimersomes (DSs) have recently become a valuable alternative nanocarrier to polymersomes and liposomes due to their molecular definition and synthetic versatility. Despite this, their biomedical application is still in its infancy. Inspired by the localized antimicrobial function of neutrophil phagosomes and the versatility of DSs, a simple three-component DS-based nanoreactor with broad-spectrum bactericidal activity is presented. This was achieved by encapsulation of glucose oxidase (GOX) and myeloperoxidase (MPO) within DSs (GOX-MPO-DSs), self-assembled from an amphiphilic Janus dendrimer, that possesses a semipermeable membrane. By external addition of glucose to GOX-MPO-DS, the production of hypochlorite (−OCl), a highly potent antimicrobial, by the enzymatic cascade was demonstrated. This cascade nanoreactor yielded a potent bactericidal effect against two important multidrug resistant pathogens, Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), not observed for H2O2 producing nanoreactors, GOX-DS. The production of highly reactive species such as –OCl represents a harsh bactericidal approach that could also be cytotoxic to mammalian cells. This necessitates the development of strategies for activating –OCl production in a localized manner in response to a bacterial stimulus. One option of locally releasing sufficient amounts of substrate using a bacterial trigger (released toxins) was demonstrated with lipidic glucose-loaded giant unilamellar vesicles (GUVs), envisioning, e.g., implant surface modification with nanoreactors and GUVs for localized production of bactericidal agents in the presence of bacterial growth
    • 

    corecore