
Nodal Discontinuous Galerkin Methods on
Graphics Processors

A. Klöcknera, T. Warburtonb, J. Bridgeb, J. S. Hesthavena

aDivision of Applied Mathematics, Brown University, Providence, RI 02912
bDepartment of Computational and Applied Mathematics, Rice University, Houston, TX

77005

Abstract

Discontinuous Galerkin (DG) methods for the numerical solution of partial
differential equations have enjoyed considerable success because they are both
flexible and robust: They allow arbitrary unstructured geometries and easy
control of accuracy without compromising simulation stability. Lately, another
property of DG has been growing in importance: The majority of a DG operator
is applied in an element-local way, with weak penalty-based element-to-element
coupling.

The resulting locality in memory access is one of the factors that enables
DG to run on off-the-shelf, massively parallel graphics processors (GPUs). In
addition, DG’s high-order nature lets it require fewer data points per repre-
sented wavelength and hence fewer memory accesses, in exchange for higher
arithmetic intensity. Both of these factors work significantly in favor of a GPU
implementation of DG.

Using a single US$400 Nvidia GTX 280 GPU, we accelerate a solver for
Maxwell’s equations on a general 3D unstructured grid by a factor of 40 to 60
relative to a serial computation on a current-generation CPU. In many cases,
our algorithms exhibit full use of the device’s available memory bandwidth.
Example computations achieve and surpass 200 gigaflops/s of net application-
level floating point work.

In this article, we describe and derive the techniques used to reach this level
of performance. In addition, we present comprehensive data on the accuracy
and runtime behavior of the method.

Key words: Discontinuous Galerkin, High-order, GPU, Parallel computation,
Many-core, Maxwell’s equations

Email addresses: andreas kloeckner@brown.edu (A. Klöckner), timwar@rice.edu
(T. Warburton), jab3@rice.edu (J. Bridge), jan hesthaven@brown.edu (J. S. Hesthaven)

Preprint submitted to Elsevier April 3, 2009

ar
X

iv
:0

90
1.

10
24

v3
 [

m
at

h.
N

A
]

 3
 A

pr
 2

00
9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147999277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Discontinuous Galerkin methods [19, 4, 11] are, at first glance, a rather
curious combination of ideas from Finite-Volume and Spectral Element methods.
Up close, they are very much high-order methods by design. But instead of
perpetuating the order increase like conventional global methods, at a certain
level of detail, they switch over to a decomposition into computational elements
and couple these elements using Finite-Volume-like surface Riemann solvers.
This hybrid, dual-layer design allows DG to combine advantages from both of
its ancestors. But it adds a third advantage: By adding a movable boundary
between its two halves, it gives implementers an added degree of flexibility when
bringing it onto computing hardware.

A momentous change in the world of computing is now opening an oppor-
tunity to exploit this flexibility even further. Previously, the execution time of
a given code could be determined simply by counting how many floating point
operations it executes. More recently, memory bottlenecks, in the form of band-
width limitation and fetch latency, have taken over as the dominant factors, and
CPU manufacturers use large amounts of silicon to mitigate this effect. It is
quite instructive and somewhat depressing to compare the chip area used for
caches, prediction, and speculation in recent CPUs to the area taken up by the
actual functional units. The picture is changing, however, and graphics proces-
sors, having recently turned into general-purpose programmable units, were the
first to do away with expensive caches and combat latency by massive paral-
lelism instead. In this article, we explore how and with what benefit DG can be
brought onto GPUs.

Two main questions arise in this endeavor: First, how shall the computa-
tional work be partitioned? In a distributed-memory setting, the answer is quite
naturally domain decomposition. For the shared-memory parallelism of a GPU,
there are several possibilities, and there is often no single answer that works
well in all settings. Second, DG implementations on serial processors often rely
heavily on the availability of off-the-shelf, pre-tuned linear algebra and commu-
nication primitives. These aids are either unavailable or unsuitable on a GPU
platform, and in stark contrast to the relatively straightforward implementation
of DG on serial machines, optimal use of graphics hardware for DG presents the
implementer with a staggering number of choices. We will describe these choices
as well as a generative approach that exploits them to adapt the method to both
the problem and the hardware at run time.

Using graphics processors for computational tasks is by no means a new idea.
In fact, even in the days of marginally programmable fixed-function hardware,
some (especially particle-based) methods obtained large speedups from running
on early GPUs. (e.g. [16]) In the domain of solvers for partial differential
equations, Finite-Difference Time-Domain (FDTD) methods are a natural fit to
graphics processors and obtained speedups of about an order of magnitude with
relative ease (e.g., [15]). Finite Element solvers were also brought onto GPUs
relatively early on (e.g., [7]), but often failed to reach the same impressive speed
gains observed for the simpler FD methods. In the last few years, high-level

2

abstractions such as Brook and Brook for GPUs [2] have enabled more and more
complex computations on streaming hardware. Building on this work, Barth et
al. [1] already predicted promising performance for two-dimensional DG on a
simulation of a the Stanford Merrimac streaming architecture [6]. Nowadays,
compute abstractions are becoming less encumbered by their graphics heritage
[17, 18]. This has helped bring algorithms of even higher complexity onto the
GPU (e.g. [9]). Taking advantage of these recent advances, this paper presents,
to the best of our knowledge, one of the first general finite-element based solvers
that achieves more than an order of magnitude of speedup on a single real-world
consumer graphics processor when compared to a CPU implementation of the
same method.

A sizable part of this speedup is owed to our use of high-order approxi-
mations. High-order methods require more work per degree of freedom than
low-order methods. This increased arithmetic intensity shifts the method from
being limited by memory bandwidth towards being limited by compute band-
width. The relative abundance of cheap computing power on a GPU makes
high-order methods especially beneficial there.

In this article, we will discuss the numerical solution of linear hyperbolic
systems of conservation laws using DG methods on the GPU. Important exam-
ples of this class of partial differential equations (PDE s) include the second-
order wave equation, Maxwell’s equations, and many relationships in acous-
tics and linear elasticity. Certain nontrivial adjustments to the discontinuous
Galerkin method become necessary when treating nonlinear problems (see, e.g.,
[11, Chapter 5]). We leave a detailed investigation of the solution of nonlinear
systems of conservation laws using DG on a GPU for a future publication, where
we will also examine the benefit of GPU-DG for different classes of PDEs, such
as elliptic and parabolic problems.

We will further focus on tetrahedra as the basic discretization element for a
number of reasons. First, it is undisputed that three-dimensional calculations
are in many cases both more practically relevant and more plagued by perfor-
mance worries than their lower-dimensional counterparts. Second, they have the
most mature meshing machinery available of all commonly used element shapes.
And third, when compared with tensor product elements, tetrahedral DG is both
more arithmetically intense and requires fewer memory fetches. Overall, it is
conceivable that tetrahedral DG will benefit more from being carried out on a
GPU.

This article describes the mapping of DG methods onto the Nvidia CUDA
programming model. Hardware implementations of CUDA are available in the
form of consumer graphics cards as well as specialized compute hardware. In
addition, the CUDA model has been mapped onto multicore CPUs with good
success [21]. Rather than claim an artificial ‘generality’, we will describe our
approach firmly in the context of this model of computation. While that makes
this work vendor-specific, we believe that most of the ideas presented herein
can be reused either identically or with mild modifications to adapt the method
to other, related architectures. To reinforce this point, we remark that the the
emerging OpenCL industry standard [8] specifies a model of parallel computa-

3

tion that is a very close relative of CUDA.
The paper is organized as follows: We give a brief overview of the theory

and serial implementation of DG in Section 2. The CUDA programming model
is described in Section 3. Section 4 explains the basic design choices behind our
approach, while Section 5 gives detailed implementation advice and pseudocode.
Section 6 characterizes our computational results in terms of speed and accuracy.
Finally, in Section 7 we conclude with a few remarks and ideas for future work.

2. Overview of the Discontinuous Galerkin Method

We are looking to approximate the solution of a hyperbolic system of con-
servation laws

ut +∇ · F (u) = 0 (1)

on a domain Ω =
⊎K
k=1 Dk ⊂ Rd consisting of disjoint, face-conforming tetrahe-

dra Dk with boundary conditions

u|Γi(x, t) = gi(u(x, t), x, t), i = 1, . . . , b,

at inflow boundaries
⊎

Γi ⊆ ∂Ω. As stated, we will assume the flux function F
to be linear. We find a weak form of (1) on each element Dk:

0 =
∫

Dk

utϕ+ [∇ · F (u)]ϕdx

=
∫

Dk

utϕ− F (u) · ∇ϕdx+
∫
∂Dk

(n̂ · F)∗ϕdSx,

where ϕ is a test function, and (n̂ · F)∗ is a suitably chosen numerical flux in
the unit normal direction n̂. Following [11], we find a strong-DG form of this
system as

0 =
∫

Dk

utϕ+ [∇ · F (u)]ϕdx−
∫
∂Dk

[n̂ · F − (n̂ · F)∗]ϕdSx. (2)

We seek to find a numerical vector solution uk := uN |Dk from the space PnN (Dk)
of local polynomials of maximum total degree N on each element. We choose
the scalar test function ϕ ∈ PN (Dk) from the same space and represent both by
expansion in a basis of Np := dimPN (Dk) Lagrange polynomials li with respect
to a set of interpolation nodes [23]. We define the mass, stiffness, differentiation,
and face mass matrices

Mk
ij :=

∫
Dk

lilj dx, (3a)

Sk,∂νij :=
∫

Dk

li∂xν lj dx, (3b)

Dk,∂ν := (Mk)−1Sk,∂ν , (3c)

Mk,A
ij :=

∫
A⊂∂Dk

lilj dSx. (3d)

4

Mk,A1

Mk,A2

Mk,A3

Mk,A4

(Mk)−1 ·=Lk Np

Nfp

Figure 1. Construction of the Lifting Matrix Lk.

Using these matrices, we rewrite (2) as

0 = Mk∂tu
k +

∑
ν

Sk,∂ν [F (uk)]−
∑

F⊂∂Dk

Mk,A[n̂ · F − (n̂ · F)∗],

∂tu
k = −

∑
ν

Dk,∂ν [F (uk)] + Lk[n̂ · F − (n̂ · F)∗]|A⊂∂Dk . (4)

The matrix Lk used in (4) deserves a little more explanation. It acts on vectors
of the shape [uk|A1 , . . . , u

k|A4]T , where uk|Ai is the vector of facial degrees of
freedom on face i. For these vectors, Lk combines the effect of applying each
face’s mass matrix, embedding the resulting facial values back into a volume
vector, and applying the inverse volume mass matrix. Since it “lifts” facial
contributions to volume contributions, it is called the lifting matrix. Its con-
struction is shown in Figure 1.

It deserves explicit mention at this point that the left multiplication by the
inverse of the mass matrix that yields the explicit semidiscrete scheme (4) is
an elementwise operation and therefore feasible without global communication.
This strongly distinguishes DG from other finite element methods. It enables
the use of explicit (e.g., Runge-Kutta) timestepping and greatly simplifies our
efforts of bringing DG onto the GPU.

2.1. Implementing DG
DG decomposes very naturally into four stages, as visualized in Figure 2.

This clean decomposition of tasks stems from the fact that the discrete DG op-
erator (4) has two additive terms, one involving an element volume integral, the
other an element surface integral. The surface integral term then decomposes
further into a ‘gather’ stage that computes the term

[n̂ · F (u−N)− (n̂ · F)∗(u−N , u
+
N)]|A⊂∂Dk (5)

and a subsequent lifting stage. The notation u−N indicates the value of uN on
the face A of element Dk, u+

N the value of uN on the face opposite to A.
As is apparent from our use of a Lagrange basis, we implement a nodal

version of DG, in which the stored degrees of freedom (“DOF s”) represent the
values of uN at a set of interpolation nodes. This representation allows us to

5

uk

Flux Gather Flux Lifting

F (uk) Local Differentiation

∂tu
k

Figure 2. Decomposition of a DG operator into subtasks. Element-local opera-
tions are highlighted with a bold outline.

find the facial values used in (5) by picking the facial nodes from the volume
field. (This contrasts with a modal implementation in which DOFs represent
expansion coefficients. Finding the facial information to compute (5) requires a
different approach in these schemes.)

Observe that most of DG’s stages are element-local in the sense that they do
not use information from neighboring elements. Moreover, these local operations
are often efficiently represented by a dense matrix-vector multiplication on each
element.

It is worth noting that since simplicial elements only require affine trans-
formations Ψk from reference to global element, the global matrices can easily
be expressed in terms of reference matrices that are the same for each element,
combined with scaling or linear combination, for example

Mk
ij =

∣∣∣∣det
dΨk

dr

∣∣∣∣︸ ︷︷ ︸
Jk:=

∫
I

lilj dx︸ ︷︷ ︸
Mij :=

, (6a)

Sk,∂νij = Jk
∑
µ

∂Ψν

∂rµ

∫
I

li∂rµ lj dx︸ ︷︷ ︸
S∂µij :=

, (6b)

where I = Ψ−1
k (Dk) is a reference element. We define the remaining reference

matrices D, MA, and L in an analogous fashion.

3. The CUDA Parallel Computation Model

Graphics hardware is aimed at the real-time rendering of large numbers
of textured geometric primitives, with varying amounts of per-pixel and per-
primitive processing. This problem is, for the most part, embarrassingly paral-
lel and exhibits this parallelism at both the pixel and the primitive level. It is
therefore not surprising that the parallelism delivered by graphics-derived com-
putation hardware also exhibits two levels of parallelism. On the Nvidia hard-
ware [17] targeted in this work, up to 30 independent, parallel multiprocessors
form the higher level. Each of these multiprocessors is capable of maintaining
several hundred threads in flight at any given time, giving rise to the lower level.

6

One such multiprocessor consists of eight functional units controlled by a
single instruction decode unit. Each of the functional units, in turn, is capable
of executing one basic single-precision floating-point or integer operation per
clock cycle. Interestingly, a fused floating-point multiply-add is one of these
basic operations. The instruction decode unit feeding the eight functional units
is capable of issuing one instruction every four clock cycles, and therefore the
smallest scheduling unit on this hardware is what Nvidia calls a warp, a set of
T := 32 threads. The architecture is distinguished from conventional single-
instruction-multiple-data (SIMD) hardware by allowing threads within a warp
to take different branches, although in this case each branch is executed in
sequence. To emphasize the difference, Nvidia calls Tesla a single-instruction-
multiple-thread (SIMT) architecture.

Up to 16 of these warps are now aggregated into a thread block and sent to
execute on a single multiprocessor. Threads in a block share a piece of execution
hardware, and are hence able to take advantage of additional communication
facilities present in a multiprocessor, namely, a barrier that may optionally serve
as a memory fence, and 16KiB1 of banked2 shared memory. The shared memory
has 16 banks, such that half a warp accesses shared memory simultaneously. If
all 16 threads access different banks, or if all 16 access the same memory location
(a broadcast), the access proceeds at full speed. Otherwise, the whole warp waits
as maximal subsets of non-conflicting accesses are carried out sequentially.

A potentially very large number of thread blocks is then aggregated into a
grid and forms the unit in which the controlling host processor submits work to
the GPU. There is no guaranteed ordering between thread blocks in a grid, and
no communication is allowed between them. Only after successful completion
of a grid submission, the work of all thread blocks is guaranteed to be visible.
In that sense, grid submission serves as a synchronization point.

Indices within a thread block and within a grid are available to the program
at run time and are permitted to be multi-dimensional to avoid expensive integer
divisions. We will refer to these indices by the symbols tx, ty, tz, and bx, by.

All threads have read-write access to the GPU’s on-board (‘global ’) mem-
ory. A single access to this off-chip memory has a latency of several hundred
clock cycles. To hide this latency, a multiprocessor will schedule other warps
if available and ready. A few things influence how many threads are available:
Each thread requires a number of registers. Also, the work of a group of threads
often involves a certain amount of shared memory. More threads may therefore
also consume more shared memory. Since both the register file and the amount
of shared memory is finite, their use may lead to artificial limits on the num-
ber of threads in a block. If there are very few threads in a block and there
isn’t space for many blocks on the same multiprocessor, the device may fail to

1“KiB” stands for Kilobyte binary or Kibibyte and represents 1024 = 210 bytes. [5]
2“Banking” of shared memory means that only addresses in distinct banks can be accessed

simultaneously. Allowing simultaneous access to all addresses in shared memory would require
prohibitive amounts of addressing logic. Therefore, banking is an expected feature of parallel
memory.

7

find warps it can run while waiting for memory transactions. This decreases
global memory bandwidth utilization. Another aspect influencing the available
bandwith to global memory is the pattern in which access occurs. Taking 32-bit
accesses as an example, loads and stores to global memory achieve the highest
bandwidth if, within a warp, thread i accesses memory location b+ π(i), where
b is a 16-aligned base address and π is a mapping obeying bπ(i)/16c = bi/16c.
Note that for global fetches only, these restrictions can be alleviated somewhat
through the use of texture units.

A final bit of perspective: While the graphics card achieves an order of
magnitude larger bandwith to its global memory than a conventional processor
does to its main memory, its floating point capacity eclipses this already large
bandwidth by yet another order of magnitude. If we visualize both compute and
memory bandwidth as physical “pipes” with a certain diameter, the challenge
in designing algorithms for this architecture lies in keeping each pipe flowing at
capacity while using a minimum of buffer space.

4. DG on the GPU: Design

The answers to three questions emerge as the central design decisions in
mapping a numerical method into an algorithm that can run on a GPU:

Computation Layout. How can the task be decomposed into a grid of thread
blocks, given there cannot be any inter-block communication? Do we need
a sequence of grids instead of a single grid?

Data Layout. How well does the data conform to the device’s alignment re-
quirements? Where and to what extent will padding be used?

Fetch Schedule. When will what piece of the data be fetched from global into
on-chip memory, i.e. registers or shared memory?

Note that the computation layout and the data layout are often the same,
and rarely independent. For the bandwidth reasons described in Section 3, the
index of the thread computing a certain result should match the index where
that result is stored. Post-computation permutations come at the cost of setting
aside shared memory to perform the permutation. It is therefore common to see
algorithms designed around the principle of one thread per output. The fetch
schedule, lastly, determines how often data can be reused before it is evicted
from on-chip storage.

Unstructured discontinuous Galerkin methods have a number of natural
granularities:

• the number Np of DOFs per element,

• the number Nfp of DOFs per face,

• the number Nf of faces per element,

• the number n of unknowns in the system of conservation laws.

8

N Np Nfp NfNfp
1 4 3 12
2 10 6 24
3 20 10 40
4 35 15 60
5 56 21 84
6 84 28 112
7 120 36 144

(a) DOF counts for moderate-
order tetrahedral elements.

Element

Element

. . .

Element

Element

. . .

Element

Element

. . .

Padding

Np
KMNp

128

64

0

(b) Microblocked memory layout.

Figure 3. Matching DG granularities to GPU alignment boundaries.

The number of elements K also influences the work partition, but it is less
important in the present discussion.

The first three granularities above depend on the chosen order of approxi-
mation as well as the shape of the reference element. Figure 3(a) gives a few
examples of their values. Perhaps the first problem that needs to be addressed
is that many of the DOF counts, especially at the practically relevant orders
of 3 and 4, conform quite poorly to the hardware’s preference for batches of 16
and 32. A simple solution is to round the size of each element up to the next
alignment boundary. This leads to a large amount of wasted memory. More
severely, it also leads to a large amount of wasted processing power, assuming
a one-thread-per-output design. For example, rounding Np for a fourth-order
element up to the next warp size boundary (T = 32) leads to 45% of the avail-
able processing power being wasted. It is thus natural to aggregate a number
of elements to get closer to an alignment boundary. Now, each of the parts of
a DG operator is likely to have its own preferred granularity corresponding to
one thread block. One option is to impose one such part’s granularity on the
whole method. We find that a better compromise is to introduce a sub-block
granularity for this purpose. We aggregate the smallest number KM of elements
to achieve less than 5% waste when padding up to the next multiple NpM of
T/2 = 16. Figure 3(b) illustrates the principle. We then impose the restriction
that each thread block work on an integer number of these microblocks. We
assign the symbol nM := dK/KMe to the total number of microblocks.

The next question to be answered involves decomposing a task into an ap-
propriate set of thread blocks. This decomposition is problem-dependent, but a
few things can be said in general. We assume a task that has to be performed
in parallel, independently, on a number of work units, and that it requires some
measure of preparation before actual work units can be processed. We are trying
to find the right amount of work to be done by a single thread block. We may let
the block complete work units in parallel, alongside each other in a single thread
(‘inline’ for brevity), or sequentially. We will use the symbols wp, wi and ws for

9

the number of work units processed in each way by one thread block. Thus the
total number of work units processed by one thread block is wpwiws. Increasing
wp often through increased parallelism and reuse of data in shared memory, but
typically also requires additional shared memory buffer space. Increasing wi
gains speed through reuse of data in registers. For example, take a two-operand
procedure like matrix multiplication. Increasing wi allows a single thread to use
data from the first operand, once loaded into registers, to process more than
one column of the second operand. Like wp, varying wi also influences buffer
space requirements. ws, finally, amortizes preparation work over a certain num-
ber of work units, at the expense of making the computation more granular.
Achieving a balance between these aspects is not generally straightforward, as
Figure 10(b) will demonstrate. Note that each of the methods discussed below
will have its own values for wp, wi, and ws.

We noted above that the number n of variables in the system of conservation
laws (1) also introduces a granularity. In some cases, it may be advantageous to
allow this system size to play a role in deciding data and computation layouts.
One might attempt do this by choosing a packed field layout, i.e. by storing all
field values at one node in n consecutive memory locations. However, a packed
field layout is not desirable for a number of reasons, the most significant of
which is that it is unsuited to a one-thread-per-output computation. If thread
0 computes the first field component, thread 1 the second, and so on, then each
field component is found by evaluating a different expression, and hence by
different code. This cannot be efficiently implemented on SIMT hardware. One
could also propose to take advantage of the granularity n by letting one thread
compute all n different expressions in the conservation law for one node. It is
practical to exploit this for the gathering of the fluxes and the evaluation of F (u).
For the more complicated lifting and differentiation stages on the other hand,
this leads to impractical amounts of register pressure. We find that, especially
at moderate orders, the extra flexibility afforded by ignoring n outweighs any
advantage gained by heeding it. If desired, one can always choose KM = n or
wi = n to closely emulate the strategies above. Further, note that for the linear
case discussed here, one has significant freedom in the ordering of operations,
for example by commuting the evaluation of F (uk) with local differentiation.

A final question in the overall algorithm design is whether it is appropriate
to split the DG operator into the subtasks indicated in Figure 2, rather than
to use a single or only two grids to compute the whole operator. Field data
would need to be fetched only once, leading to a good amount of data reuse.
But at least for the scarce amounts of shared memory buffer space in current-
generation hardware, this view is too simplistic. Each individual subtask tends
to have a better, individual use for on-chip memory. Also, it is tempting to
combine the gather and lift stages, since one works on the immediate output of
the other. Observe however that there is a mismatch in output sizes between the
two. For each element, the gather outputs NfpNf values, while the lift outputs
Np. These two numbers differ, and therefore the optimal computation layouts
for both kernels also differ. While it is possible to use the larger of the two
computation layouts and just idle the overlap for the other computation, this is

10

Convention Storage Type
v Italic font Constant or unrolled loop variable
v Typewriter font Register variable
vS Superscript S Variable in shared memory
vG Superscript G Variable in global memory
vT Superscript T Variable bound to a texture

Table 1. Typographical conventions for different types of GPU storage.

suboptimal. We find that the added fetch cost is easily amortized by using an
optimal computation layout for each part of the flux treatment.

5. DG on the GPU: Implementation

5.1. How to read this Section
To facilitate a detailed, yet concise look at our implementation techniques,

this section supplements its discussion with pseudocode for some particularly
important subroutines. Pseudocode contains all the implementation details and
exposes the basic control and synchronization structure at a single glance. In
addition to the code, there is text discussing every important design decision
reflected in the code.

To maximize readability, we rely on a number of notational conventions.
First, dxen is the smallest integer larger than x divisible by n. Next, [a, b〉
denotes the ‘half-open’ set of integers {a, . . . , b − 1}. Using this notation, we
may indicate ‘vectorized’ statements, e.g. an assignment a[k,k+n〉 ← k[0,n〉. The
loops indicated by these statements are always fully unrolled in actual code.
Depending on notational convenience, we alternate between subscript notation
ai and indexing notation a[i]. Both are to be taken as equivalent. Sometimes, we
use both sub- and superscripts on a variable. This helps brevity and readability,
but is only done if the memory layout of the corresponding variable is clarified
elsewhere. Otherwise, for multidimensional indices, C-like (row-major) data
layout is assumed.

Lastly, the GPU offers many different types of storage. To avoid confusion,
we assign each type of storage a separate typographical convention, as outlined
in Table 1. If and only if two storage locations of different types are used for
related data, we use the same letter for both.

5.2. Flux Lifting
Lifting is one of the element-local components of a discontinuous Galerkin

operator, and, for simplicial elements, is efficiently represented by a matrix-
matrix multiplication as in Figure 4(a), followed by an elementwise scaling.

11

u . . .

E
le

m
e
n
t

0
E
le

m
e
n
t

1
E
le

m
e
n
t

2
E
le

m
e
n
t

3

E
le

m
e
n
t

8

L Lu . . .

E
le

m
e
n
t

0
E
le

m
e
n
t

1
E
le

m
e
n
t

2
E
le

m
e
n
t

3

E
le

m
e
n
t

8

(a) Applying an element-local DG
operator L to a field u by a matrix-
matrix product.

Element
FaceFaceFaceFace

Element
FaceFaceFaceFace

Element
FaceFaceFaceFace

Element
FaceFaceFaceFace

Element
FaceFaceFaceFace

Element
FaceFaceFaceFace

Element
FaceFaceFaceFace

Element
FaceFaceFaceFace

Element
FaceFaceFaceFace

Padding

NfpNfNfp
KMNfNfp NfM

256
128

0

(b) Output memory layout for the flux gather stage,
input memory layout of the flux lifting stage.

Figure 4. Implementation aspects of flux lifting.

The first, tempting approach to implementing this is to take advantage of
the vendor-provided GPU-based BLAS workalike. This is hampered by sub-
optimal performance and strict alignment requirements. As a result, a custom
algorithm is in order.

One key to high performance on the GPU is to find a good use for the
scarce amount of shared memory. Both operands in an element-local matrix
multiplication see large amounts of reuse: Each field value is used Np times, and
each entry of a local matrix is used Np times for each element. It is therefore
a sensible wish to load both operands into shared memory. For the tetrahedral
elements targeted here, this is problematic. Even for elements of modest order,
the matrix data quickly becomes too large. This restricts the applicability of a
matrix-in-shared approach to low orders, and we will therefore first examine the
more broadly applicable method of using the shared memory for field data. Still,
matrix-in-shared does provide a benefit for certain low orders and is examined
in the context of element-local differentiation in Section 5.4.

We choose a one-thread-per-output design for flux lifting. This dictates that
computation and output layouts match Figure 3(b). But the input layout for
lifting is mildly different: The flux gather, which provides the input to lifting, ex-
tracts NfNfp DOFs per element. Recall that the layout of Figure 3(b) provides
Np DOFs per element. Since typically Np 6= NfNfp, we introduce a mildly dif-
ferent layout as shown in Figure 4(b), using the same number KM of elements as
found in a mircroblock, padded to half-warp granularity. This padding is likely
somewhat more wasteful than the carefully tuned one of Figure 3(b). Fortu-
nately, this is irrelevant: We will not be using Figure 4(b) as a computation
layout, and data in this format is used only for short-lived intermediate results.
Overall, the resulting memory layout has NfM := dNfNfpKMeT/2 DOFs per
microblock.

We are now ready to discuss the actual algorithm, at the start of which we
need to fetch field data into shared memory. Because we chose a one-thread-
per-output computation layout, we will have Np threads per element fetching
data. Due to the mismatch between Np and NfNfp, we may require multiple

12

fetch cycles to fetch all data. In addition, the last such fetch cycle must involve
a length check to avoid overfetching. It is important to unroll this fetch loop
and to use some care with the ending conditional to still allow fetch pipelining3

to occur.
With the field data in shared memory, the matrix data is fetched using

texture units. By way of the texture cache, we hope to take advantage of
the significant redundancy in these fetches. The matrix texture should use
column-major order: Realize that within a block, a large number of threads,
each assigned to a row of the matrix, load values from each column in turn.
Column-major order gives the most locality to this access pattern.

With this preparation, the actual matrix-matrix product can be performed.
Since all threads within one element load each of the element’s nodal values
from shared memory in order, these accesses are handled as a broadcast and
therefore conflict-free. Conflicts do occur, however, if a half-warp straddles an
element boundary within a microblock. In that case, threads before and after the
element boundary access different elements, and therefore a double-broadcast
bank conflict occurs. Figure 5(a) shows the genesis of this conflict. Fortunately,
that does not automatically mean that microblocking is a bad idea. It turns out
that the performance lost when using no microblocking and hence full padding
is about the same as the one lost to these bank conflicts. Even better: there is a
way of mitigating the conflicts’ impact without having to forgo the performance
benefits of microblocking. The key realization is that even if only one half of
a warp encounters a conflict, the other half of the warp is made to wait, too,
regardless of whether it conflicted. Conversely, if we assemble warps in such
a way that conflict-prone and non-conflict-prone half-warps are kept separate,
then we avoid unnecessary stalling. If wp > 1, then we can achieve such a
grouping by laying out the computation as seen in Figure 5(b).

Algorithm 1 represents the aggregate of the techniques described in this
section. Observe that since there is no preparation work, we set ws := 1.
We should stress at this point that both the field-in-shared and the matrix-in-
shared approach can be used for both lifting and element-local differentiation.
Adapting the strategy of Algorithm 1 for the latter is quite straightforward.

5.3. Flux Extraction
In a strong-form, nodal implementation of the discontinuous Galerkin method,

flux extraction or ‘gather’ iterates over the node indices of each face in the mesh
and evaluates the flux expression (5) at each such node. As such, it is a rather
quick operation characterized by few arithemtic operations and a very scattered
fetch pattern. This non-local memory access pattern is the most expensive as-
pect of flux extraction on a GPU, and our foremost goal should therefore be

3Pipelining is a fetch optimization strategy. It performs high-latency fetches in batches
ahead of a computation. Since a warp only stalls when unavailable data is actually used in a
computation, this allows a single thread to wait for multiple memory transactions simultane-
ously, decreasing latency and reducing the need for parallel occucpancy. The Nvidia compiler
automatically pipelines fetches if the code structure allows it.

13

wp

NpMNpKMNp

El. Data

thread
number

(a) ‘Conventional’, conflict-aggravating
layout. The first and third warp
(red) serialize access because of con-
flicts in the second half-warp of each mi-
croblock. Only the second warp (green)
proceeds without conflicts.

wp

NpMNpKMNp

El. Data

thread
number

(b) Improved, conflict-mitigating lay-
out. Only the second warp (red) seri-
alizes access for conflicts. The first and
third warp (green) remain conflict-free.

Figure 5. Computation layouts for matrix multiplication with fields in shared
memory.

Algorithm 1 Flux Lifting, field-in-shared.
Require: A grid of dnM/wpwie × 1 blocks of size T/2× wp ×NpM/(T/2).
Require: Inputs: LT, the reference element’s lifting matrix; iT, the per-element

inverse Jacobians; fG, the surface fluxes in the format of Figure 4(b).
Ensure: Output: rG, the surface fluxes fG multiplied by the per-element lifting

matrix Lk.
m← (bxwp + ty)wi {the base microblock number}
i← (T/2)tz + tx {this thread’s DOF number within its microblock}
{load data}
for all unrolled b ∈ [0, ddNfMeT /dNpMeT e〉 do

if bNpM + i < NfM then
fSty,[0,wi〉,bNpM+i ← fG(m+[0,wi〉)dNfMeT+bNpM+i

Memory Fence
{perform matrix multiply}
if i < KMNpM then

r[0,wi〉 ← 0
for all unrolled n ∈ [0, NfNfp〉 do

r[0,wi〉 ← r[0,wi〉 + LT[i mod Np, n]fSty,[0,wi〉,n
rG(m+[0,wi〉)NpM+i ← iT[(m + [0, wi〉)KM + bi/Npc]r[0,wi〉

14

to minimize the number of fetches at all costs. For linear conservation laws,
we may with very little harm treat the element-local parts of a DG operator
as if they acted on scalar fields. This is however not true of the non-local flux
extraction. Fetching all fields only once and then computing all n fluxes saves
a significant n2 − n fetches of each facial node value.

The next potential savings comes from the fact that the fluxes on the two
sides of an interior face pair use the same face data. By computing fluxes for
such face pairs together, we can cut the number of interior face fetches in half.
Computing and storing opposite fluxes together is of course only possible if the
task decomposition assigns both to the same thread block. We will therefore
need to invest some care into this decomposition.

To help find the properties of the task decomposition, observe that by choos-
ing to compute opposite fluxes together, we are implicitly rejecting a one-thread-
per-output design. To accommodate opposite faces’ fluxes being computed si-
multaneously, we will allow the gathered fluxes to be written into a shared
memory buffer in random order in time, but conforming to the output layout
of Figure 4(b). Once completed, this shared memory buffer will then be flushed
to global memory in one contiguous write operation. This limits our task de-
composition choices: Thread blocks will output contiguous pieces of data in the
output layout. This means that the smallest granularity on which a thread block
for flux extraction may begin and end is that of a microblock: We will let each
thread block compute fluxes on an integer number MB of microblocks. Observe
that this is not ideal: The natural task decomposition for flux extraction is by
face pair, not by element, nor, even worse, by a group of elements as large as a
microblock. Nonetheless, given our output memory layout, this decomposition
is inevitable.

But all is not lost. By carefully controlling the assignment of elements to
microblocks, and again by carefully choosing the assignment of microblocks to
flux extraction thread blocks, we can hope to recover many block-interior face
pairs within a thread block. Note the far-reaching consequences of what was
just decided: We need to have the elements participating in a flux-gather thread
block sit adjacent to each other in the mesh. To achieve this, we partition the
mesh into pieces of at most KMMB elements each and then assign the elements
in each piece to microblocks sequentially. This means nothing less than letting
our mesh numbering be decided by what is convenient for the gathering of fluxes.

What can we say about the required partition? It is important to realize
that this is a fairly different domain decomposition problem than the one for
distributed-memory machines. First, there is a hard limit of KMMB elements
per piece, as determined by the amount of shared memory set aside for write
buffering. Second, there is a (somewhat softer) limit on the number of block-
external faces. This limit stems from the fact that information about the faces
on which we gather fluxes needs to be stored somewhere. Obviously, block-
internal face pairs can share this information and therefore require less storage–
one descriptor for each two faces. Face pairs on a block boundary are less
efficient. They require one descriptor for each face. If the block size KMMB is
relatively large, a bad, splintered partition may have too many boundary faces

15

and therefore exceed the “soft” limit on available space for face pair descriptors.
Therefore, for large blocks, we require a ‘good’ partition with as few block-
exterior face pairs as possible. For very small blocks, on the other hand, the
problem is exactly opposite: If KMMB is small, the absolute quality of the
mesh partition is not as critically important: The small overall number of faces
means that we will not run out of descriptor space, making the soft limit even
softer.

So, how can the needed partition be obtained? A natural first idea is to
use conventional graph partitioning software (e.g. [14]). Problematically, these
packages tend to fail when partitioning very large meshes into very many small
parts. In addition, our ‘soft’ and ‘hard’ limits are difficult to enforce in these
packages, so that obtaining a conforming partition may take several ‘attempts’
with increasing target partition sizes. Increased target partition sizes, in turn,
mean that there are microblocks where element slots go unassigned. This means
that generic graph partitioners are not a universal answer. They work well and
generate good-quality partitions if KMMB ' 10. Otherwise, we fall back on a
simple greedy breadth-first agglomerator that picks elements by a total connec-
tivity heuristic, illustrated in Algorithm 2. In this case, the greedy algorithm
may produce a few very ‘bad’ scattered blocks with many external faces, but we
have found that they matter neither in performance, nor in keeping the ‘soft’
limit.

Algorithm 2 Simple Greedy Partition.
Require: Input: set of elements E with connectivity C := {(e1, e2) :
e1 and e2 share a face}.

Ensure: Output: the partition, a set of blocks P , each of size ≤ l.
P ← ∅
while E 6= ∅ do

Q← {a seed element from E} (a queue of candidate elements)
B ← ∅ (the block currently being generated)
loop

Find and remove the element e ∈ Q that shares the most faces with
B.
if e ∈ E then

Remove e from E, add it to B.
if |B| = l then

Make first entry of Q the new seed element, break the loop.
Q← Q ∪ {f : (e, f) ∈ C}

if Q = ∅ then
if E = ∅ then

Break the loop.
else

Add an arbitrary element from E to Q.
P ← P ∪ {B}

16

Once the partition is constructed, we obtain for each block a number of
elements whose faces fall into one of three categories: intra-block interior, inter-
block interior, and boundary faces. We design our algorithm to walk an array
of data structures describing face pairs, each of which falls into one of these
categories. Within this array, each face pair structure contains all information
needed to gather and compute the fluxes for its target face(s). Descriptors for
intra-block interior face pairs drive the flux computation for two faces at once,
while the other two kinds only drive the computation for one face. The array is
loaded from global into shared memory when each thread block begins its work.
To minimize branching and to save storage space in each descriptor, we make
the kind of each face pair descriptor implicit in its position in the array. To
achieve this, we order the array by the face pair’s category and store how many
face pairs of each category are contained in the array.

Because we implement a nodal DG method, face index lists play an impor-
tant role in the gather process: Each face’s nodal values need to be extracted
from a given volume field. Since a tetrahedron has four faces, there are four
possible index subsets at which each face’s DOFs are found, all of length Nfp.
Knowing these index subsets enables us to find surface nodal values for one ele-
ment. But we need to find corresponding nodal values on two opposite elements.
Therefore, we may need to permute the fetch ordering of one of the elements in
a face pair. Altogether, to find opposing surface nodal values, we need to store
two index lists. Since the number of distinct index lists is finite, it is reasonable
to remove each individual index list from the face pair data structure and to
instead refer to a global list of index lists. We find that a small texture provides
a suitable storage location for this list. Finally, note that intra-block face pairs
require another index list: If we strive to conform to an assumed ‘natural’ face
ordering of one ‘dominant’ face, writing the other’s data into the purely facial
structure from Figure 4(b) requires a different index list than the one needed to
read the element’s volume data.

Of all the parts of a DG operator, the flux gather stage is the one that
is perhaps least suited to execution on a GPU. The algorithm is data-driven
and therefore branch-intensive, it accesses memory in an erratic way, and, as n
grows, it tends to require a fair bit of register space. It is encouraging to see
that despite these issues, it is possible to design a method, given in Algorithm
3, that performs respectably on current hardware.

5.4. Element-Local Differentiation
Unlike lifting, element-local differentiation must be represented not as one

matrix-matrix product (see Figure 4(a)), but as d = 3 separate ones whose
results are linearly combined to find the global x-, y- and z-derivatives. Each
of the d differentiation matrices has Np ×Np entries and is applied to the same
data. To maximize data reuse and minimize fetch traffic, it is immediately
apparent that all d matrix multiplications should be carried out “inline” along
with each other.

Superficially, this makes differentiation look quite like a lift where we have
chosen wi = d. But there is one crucial difference: the three matrices used

17

Algorithm 3 Flux Extraction.
Require: a grid of dnM/MBe × 1 blocks of size Nfp × wp × 1.
Require: Inputs: (uT)[0,n〉, the set of fields of which fluxes are to be computed,

each as a separate texture, dG, face information records, JT, face index list
array.

Ensure: Outputs: (fG)[0,n〉, the surface fluxes for each face of each element, as
a sequence of scalar fields.
Load face information records from dG[bx] into the shared memory variable
dS.

Memory Fence
e← ty {initialize the number of the face pair this thread is working on }
while e < # of interior face pairs in dS do

(i−, i+)← dS[e].fetch base−,+ + JT[dS[e].fetch idx list nr−,+, tx]
u

[0,n〉
−,+ ← (uT)[0,n〉

i−,+

(fS)[0,n〉[dS[e].store base− + tx]
← dS[e].face jacobian · [n̂ · F − (n̂ · F)∗][0,n〉(u[0,n〉

− , u
[0,n〉
+)

(fS)[0,n〉[dS[e].store base+ + jT[dS[e].store idx list nr+, tx]]
← dS[e].face jacobian · [(−n̂) · F − ((−n̂) · F)∗](u[0,n〉

+ , u
[0,n〉
−)

e← e + wp
while e < # of interior and exterior face pairs in dS do

(i−, i+)← dS[e].fetch base−,+ + JT[dS[e].fetch idx list nr−,+, tx]
u

[0,n〉
−,+ ← (uT)[0,n〉

i−,+

(fS)[0,n〉[dS[e].store base− + tx]
← dS[e].face jacobian · [n̂ · F − (n̂ · F)∗](u[0,n〉

− , u
[0,n〉
+)

e← e + wp
while e < # of face pairs in dS do

i− ← dS[e].fetch base− + JT[dS[e].fetch idx list nr−, tx]
u

[0,n〉
− ← (uT)[0,n〉

i−

u
[0,n〉
+ ← b(u[0,n〉

− , dS[e]) {calculate boundary condition}
(fS)[0,n〉[dS[e].store base− + tx]

← dS[e].face jacobian · [n̂ · F − (n̂ · F)∗](u[0,n〉
− , u

[0,n〉
+)

e← e + wp
Memory Fence

(fG)[0,n〉
bxMBNfM+[0,MBNfM 〉 ← (fS)[0,n〉

[0,MBNfM 〉 (not unrolled)

18

for differentiation are all different. Increasing wi drives data reuse in lifting
simply by occupying more registers. As we will see in Section 6, this suffices
to make it go very fast. Differentiation on the other hand already has a built-
in “wi multiplier” of d and has to deal with different matrices. Both factors
significantly increase register pressure. Stated differently, this means that it is
unlikely that we will be able to drive matrix data reuse by using more registers
as we were able to do for lifting. But the matrix remains the most-reused bit of
data in the algorithm. In this section, we will therefore attempt to exploit this
reuse by storing the matrix, not the field, in shared memory.

We have already discussed in Section 5.2 that the matrix-in-shared approach
can only work for low orders because of the rapid growth of the matrix data with
N . At first, this seems like a problematic restriction that makes the approach
less general than it could be. It can however be turned into an advantage: Since
we can assume that the algorithm runs at orders six and below, we can exploit
this fact in our design decisions.

We begin our discussion of this approach by figuring how the matrix data
should be loaded into shared memory. As in Section 5.2, we adopt a one-thread-
per-output approach. A straightforward first attempt may be to load all d local
differentiation matrices into shared memory in their entirety. Then each thread
computes a different row of the matrix-vector product, and in doing so, thread
number i accesses the ith row of the matrix. Without loss of generality, let the
matrix be stored in row-major order, so that thread i accesses memory cell num-
ber iNp. Shared memory has T/2 = 16 distinct memory banks, and therefore
the access is conflict-free iff Np and 16 are relatively prime, or, more simply, iff
Np is odd. This is encouraging: We can achieve a conflict-free access pattern
simply by adding a ‘padding’ column if necessary to enforce an odd stride S.
Figure 7(a) shows the resulting assignment of matrix data to shared memory
banks, and Figure 7(b) illustrates the resulting conflict-free access pattern.

Unfortunately, this is too easy. In the presence of microblocking, conflict-
free access becomes more difficult. If a half-warp straddles one or more element
boundaries, bank conflicts are likely to result. The access not only has a stride
S, but also incorporates a jump from the end of the matrix to its beginning, a
stride of (Np − 1)S. And unlike in the previous case, we cannot simply add a
pad row to make the access conflict-free. Figure 7(c) displays the problem.

One way to avoid the disastrous end-to-beginning jump and to maintain the
conflict-free access pattern would be to duplicate the matrix data from the first
rows beyond the end of the matrix. This is workable in principle, but in practice
we are already filling the entire shared memory space with matrix data and are
unlikely to be able to afford the added duplication. Fortunately, the duplication
idea can be saved, and there exists a conflict-free matrix storage layout that
does not require us to abandon microblocking.

Departing from the idea that we will store the entire matrix, we aim at
storing just a constant-size row-wise segment of the matrix. Then, if the end of
the matrix falls within a segment, we fill up the rest of the segment with rows
from the beginning, providing the necessary duplication for conflict-free access.
For this layout, we consider a composite matrix made up of NM vertically

19

D

D

D

NR

Np

NpM

NMNp

Np

u

Du

Figure 6. Row-wise segmentation of a microblocked matrix-matrix product.
Element boundaries are shown in black, segment boundaries in red. Also shown:
Fetch redundancy caused by segmentation. The second segment fetches field data
from both the first and the second element because it overlaps rows from both.

concatenated copies of the D∂µ. This composite matrix is then segmented into
pieces of NR rows each, where NR is chosen as a multiple of T/2. Each such
matrix segment has a naturally corresponding range of degrees of freedom in
a microblock, and we limit the thread block that loads this matrix segment to
computing outputs from this range. Figure 6 illustrates the principle.

This computation layout makes the shared memory access conflict-free. Un-
fortunately, it also introduces a different, smaller drawback: there now is fetch
redundancy. A segment needs to fetch field data for each element “touched” by
its rows. This may lead it to fetch the same field values as the segment above
and below it. Figure 6 gives an indication of this fetch redundancy, too. Fortu-
nately, these duplicated accesses tend to happen in adjacent thread blocks and
therefore possibly at the same time. We speculate that the L2 texture cache in
the device can help reduce the resulting increased bandwidth demand.

Next, observe that the matrix segments typically use less memory than the
whole matrix. We can therefore reexamine the assertion that loading both
matrix and fields into shared memory is not viable. Unfortunately, while the
space to do so is now available, the field access bank conflicts from Section 5.2
spoil the idea.

One final observation is that for the typical choice of the reference element
[11] the three differentiation matrices D∂µ are all similar to each other by a per-
mutation matrix. Using this fact could allow for significant storage savings, but
in our experiments, the added logic was too costly to make this trick worthwhile.

Algorithm 4 presents an overview of the techniques in this section. Instead
of maintaining three separate local differentiation matrices, it works with one
matrix in which the D∂µ are horizontally concatenated and then segmented.
Shared memory limitations allow this algorithm to work at order six and below.

20

Banked Matrix
Storage

bank

memory

row
number

Full Matrix

(a) Assignment of matrix rows to memory banks.
Alternating matrix rows are shown in two differ-
ent shades of gray. They preserve their color as
they move into individual 4-byte cells in the banked
shared storage. Padding inserted to prevent con-
flicts is shown in white.

Banked Matrix
Storage

bank

memory M
icro

b
lo

ck
E

lem
en

t
0

E
lem

en
t

1

thread
number

Computation
Layout

(b) Conflict-free access pattern in the first
half-warp of the computation layout. The
green highlighting illustrates that each of
the 16 accesses lands in a unique bank.

Banked Matrix
Storage

bank

memory M
icro

b
lo

ck
E

lem
en

t
0

E
lem

en
t

1

thread
number

Computation
Layout

(c) Conflicting access pattern in the sec-
ond half-warp of the computation lay-
out. The memory banks highlighted in red
show 4 banks with two accesses each.

Figure 7. Local matrices and memory banks.

21

Algorithm 4 Local Differentiation with a segemented matrix in shared memory.
Require: A grid of dNpM/NRe × dnM/(wpwiws)e blocks of size NR × wp × 1.
Require: Inputs: uT, the field to be differentiated; rT, the local-to-global dif-

ferentiation coefficients.
Ensure: Output: dGν , the local x, y, z-derivatives of uT.

Allocate the differentiation matrix chunk DS ∈ RNR×(Npd) in shared memory.
Load rows [bxNR, bx(NR + 1)〉 (modNp) of [D∂1, . . . , D∂d] into DS.

Memory Fence
for all s ∈ [0, ws) do

m← ((byws + s)wp + ty)wi {this thread’s microblock number}
diµ ← 0 for µ ∈ {1, . . . , d} and i ∈ [0, wi〉
for all unrolled n ∈ [0, Np〉 do

u[0,wi〉 ← uT[(m + [0, wi〉)NpM + n]
diµ ← diµ + DS[tx, µNp + n]ui for µ ∈ {1, . . . , d} and i ∈ [0, wi〉

(dG)mNpM+[0,wi〉NpM+tx
[0,d〉 ←

∑
µ(rT)(m+[0,wi〉)KM

[0,d〉d+µ diµ

6. Experimental Results

In this section, we examine experimental results obtained from a DG solver
for Maxwell’s equations in three dimensions for linear, isotropic, and time-
invariant materials. In terms of the electric field E, the magnetic field H, the
charge density ρ, the current density j, the permittivity ε, and the permeability
µ, they read

ε∂tE −∇×H = −j, µ∂tH +∇× E = 0, (7)
∇ · (εE) = ρ, ∇ · (µH) = 0. (8)

We absorb E and H into a single state vector

u := (E,H)T = (Ex, Ey, Ez, Hx, Hy, Hz)T .

If we define

F (u) :=

 0 −Ez Ey 0 Hz −Hy

Ez 0 −Ex −Hz 0 Hx

−Ey Ex 0 Hy −Hx 0

T ,
(7) is equivalently expressed in conservation form as[

ε 0
0 µ

]
ut +∇ · F (u) = 0.

If the two equations (8) are satisfied in the initial condition, the equations (7)
ensure that this continues to be the case. Remarkably, the same is also true of
the DG discretization of the operator [10]. We may therefore assume a compliant
initial condition and omit (8) from our further discussion.

22

We label the numerical solution uN := (EN , HN)T and choose the numerical
flux F ∗ to be the upwind flux from [10]:

n̂ · (FN − F ∗N) :=
1
2

[
{Z}−1n̂× (Z+ JHN K− n̂× JEN K)
{Y }−1n̂× (−Y + JEN K− n̂× JHN K)

]
.

We have employed the conventional notations for the cross-face average {u} :=
(u−N+u+

N)/2 and jump JuK := u+
N−u

−
N . For concise notation, we use the intrinsic

impedance Z :=
√
µ/ε and admittance Y := 1/Z. Applying the principles of

Section 2, we arrive at a discontinuous Galerkin scheme.
For our experiments, a solver using this scheme runs on an off-the-shelf

Nvidia GTX 280 GPU with 1 GiB of memory using the Nvidia CUDA driver
version 177.67. The GPU code was compiled using the Nvidia CUDA compiler
version 2.0. At the time of this writing, GPUs of the same type as the one used
in this test are sold for less than US$400.

We use a rectangular, perfectly conducting vacuum cavity (see [13, Section
8.4]) excited by one of its eigenmodes to test the approximate solutions for
accuracy. The solver works in single precision. L2 errors observed for a sequence
of grids at orders from one through nine are shown in Table 2. To better display
the actual convergence of the method, the meshes examined were chosen to be
rather coarse. Between the onset of asymptotic behavior and the saturation
at the limits of single precision, the error exhibits the expected asymptotic
behavior of hN+1 [10]. We observe that the solver recovers a significant part of
the accuracy provided by IEEE 754 single precision floating point. It exhibited
the same stability properties and CFL time step restrictions as a corresponding
single- and double-precision CPU implementation. We have thus established
that the discussed algorithm works and provides solution accuracy on a par to
what would be expected of a single-precision CPU solver.

K 475 728 1187 1844
N h = 0.3 h = 0.255 h = 0.21675 h = 0.184237 EOC
1 1.57 · 100 1.19 · 100 1.03 · 100 6.46 · 10−1 1.72
2 4.15 · 10−1 2.84 · 10−1 1.82 · 10−1 1.19 · 10−1 2.58
3 1.61 · 10−1 9.44 · 10−2 5.56 · 10−2 2.80 · 10−2 3.55
4 4.75 · 10−2 2.52 · 10−2 1.13 · 10−2 5.03 · 10−3 4.64
5 1.54 · 10−2 6.37 · 10−3 2.55 · 10−3 9.03 · 10−4 5.79
6 3.84 · 10−3 1.42 · 10−3 4.42 · 10−4 1.32 · 10−4 6.94
7 9.89 · 10−4 2.77 · 10−4 7.36 · 10−5 1.77 · 10−5 8.24
8 1.91 · 10−4 4.76 · 10−5 1.05 · 10−5 2.55 · 10−6 8.90
9 4.25 · 10−5 8.71 · 10−6 2.10 · 10−6 1.30 · 10−6 7.31

Table 2. L2 errors and empirical orders of convergence obtained by a solver
for Maxwell’s equations on an Nvidia GTX 280 running in single precision, at a
variety of orders and for a number of rather coarse meshes.

The reason for bringing DG onto a GPU was however not to show that it
works there, but to show that it can be made to work extremely fast. Figure

23

2 4 6 8
Polynomial Order N

0

50

100

150

200

250

300

G
Fl

o
p
s/

s

GPU
CPU

2 4 6 8
20

25

30

35

40

45

50

55

60

S
p
e
e
d
u
p
 F

a
ct

o
r

Speedup

(a) Discontinuous Galerkin performance in
GFlops/s on a GPU and a CPU. Computa-
tions were performed in single precision.

2 4 6 8
Polynomial Order N

0

1

2

3

4

5

D
O

Fs
/s

1e8

(b) Number of degrees of freedom to which
our methods can apply the Maxwelll oper-
ator in one second. Assuming linear scal-
ing, this graph can be used to determine
run times for larger and smaller problems.
DOFs from each of the six Maxwell fields
are counted separately.

Figure 8. Performance characteristics of DG on Nvidia graphics hardware.

8(a) portrays the speed of our solver in comparison with a CPU implementation
running on a single core of a 3 GHz Intel Core2 Duo E8400 CPU, also running
in single precision. The calculations used ATLAS 3.8.2 [25] for element-local
operations if such use proved advantageous. The results are scaled as float-
ing point operations per second, obtained by counting the number of floating
point additions and multiplications in the algorithm and dividing by the time
in seconds. GPU times were measured using the cuEventElapsedTime() call.
Overall, the GPU outperforms the CPU by factors ranging from 24 to 57. At
the practically relevant orders of three and four, the speedup factors are 48 and
57, respectively. It is worth noting that these two orders are not only the ones
that see most practical use, they also exhibit some of the largest speedup factors
on the GPU.

Orders three and four are particularly favorable not only for their apprecia-
ble speedups and their moderate time step requirements [24]. They also achieve
the peak nodal value throughputs on the GPU as shown in Figure 8(b). Nat-
urally, high-order approximations of solutions to partial differential equations
contain much more information per DOF than do solutions obtained via low
order methods. This is most apparent in the number of DOFs required to ac-
curately represent one wavelength [12]. Interestingly, we observe that despite
lower computational load, the DG methods of orders one and two achieve lower
overall throughput than the next higher ones, a likely result of a mismatch with
the hardware’s granularities. This crossover between granularity effects and the
increase in floating point work with growing N makes DG methods of orders
three and four the fastest DG methods on a GPU even on a per-DOF basis.

24

1 2 3 4 5 6 7 8 9
Polynomial Order N

0

50

100

150

200

250

300

350
G

Fl
o
p
s/

s
Gather
Lift
Diff
Assy.
Rk4
Net

(a) Compute bandwidth in GFlops/s
achieved by each part of the DG opera-
tor, at various polynomial orders. The
published theoretical peak floating point
performance for the hardware on which
these tests were run is 933 GFlops/s [22].

2 4 6 8
Polynomial Order N

0

20

40

60

80

100

%
 o

f
w

a
ll

cl
o
ck

 t
im

e

Gather
Lift
Diff
Assy.
Rk4

(b) Percentage of time spent in various parts
of the DG operator vs. polynomial order.

Figure 9. Performance characteristics of DG on Nvidia graphics hardware,
continued.

Recall now that we have split the DG operator into several parts, each of
which performs distinct kinds of processing and, as we have seen, tends to
require a different strategy to map onto a GPU. It is therefore interesting to
see what performance level is attained by each part of the operator. Figure
9(a) gives an indication of this performance, based again on the number of
floating point operations per second. It is reassuring that, despite different
implementation strategies, the flop rates for element-local differentiation and
lifting evolve almost identically as the order N is increased. These two parts
of the operator are also characterized by the highest arithmetic intensity and
the most regular access pattern. As an unsurprising consequence, they are
able to realize the greatest performance gain as the order of the operator and
therefore the access granularity grows. The flux gather, on the other hand,
realizes its greatest performance at orders three and four. We suspect that the
decline in performance with increasing N can be attributed to the growth of the
indirect indexing information in the form of face index lists JT from Algorithm
3. These lists are referenced constantly throughout the whole algorithm and
are therefore likely to reside in the texture cache, of which there are only a
few KiB per multiprocessor. As these lists grow, their cache eviction likelihood
also grows, resulting in an increased access latency. In addition to the above-
mentioned main parts of the operator, the figure also shows performance data
for the assembly of the operator and the fourth-order low-storage Runge Kutta
timestepper [3]. Both of these operations perform linear combinations of vectors,
making them much less arithmetically intense than the element-local operations.
Fortunately, as the order N increases, the processing time spent in element-
local operations dominates and helps decrease the influence of the latter three

25

1 2 3 4 5 6 7 8 9
Polynomial Order N

20

40

60

80

100

120

140

160

180

200
G

lo
b
a
l
M

e
m

o
ry

 B
a
n
d
w

id
th

 [
G

B
/s

]
Gather
Lift
Diff
Assy.
Peak

(a) Memory bandwidths in GB/s achieved
by each part of the DG operator. The peak
memory bandwidth published by the man-
ufacturer is 141.7 GB/s. Values exceeding
peak bandwidth are believed to be due to
the presence of a texture cache.

15 20 25 30
wp

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

E
x
e
cu

ti
o
n
 t

im
e
 [
m
s]

Local differentiation, matrix-in-shared,
order 4, with microblocking
point size denotes wi ∈

{
1, ,4

}

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

w
s

(b) Sample work distribution parameter
study for local differentiation on fourth-
order elements with microblocking enabled.

Figure 10. Performance characteristics of DG on Nvidia graphics hardware,
continued.

operations on overall performance. Figure 9(b) reinforces this point.
It is interesting to correlate the achieved floating point bandwidth of each

component from Figure 9(a) with the bandwidth reached for transfers between
the processing core and global memory, shown in Figure 10(a). We obtained
these numbers by counting the number of bytes fetched from global memory ei-
ther directly or through a texture unit. The theoretical peak memory bandwidth
published by Nvidia is 141.7 GB/s, shown as a black horizontal line. Perhaps
the most striking feature at first is the fact that the memory bandwidth mea-
sured for flux lifting transcends this theoretical peak at orders five and above.
We attribute this phenomenon to the presence of various levels of texture cache.
It should perhaps be sobering that the other parts of the DG operator do not
manage the same feat. In any case, flux lifting uses the fields-in-shared strat-
egy, and therefore fetches and re-fetches the rather small matrix L, making large
amounts of data reuse a plausible proposition. Aside from this surprising be-
havior of flux lifting, it is both interesting and encouraging to see how close to
peak the memory bandwidth for element-local differentiation gets. As a con-
verse to the above, this makes it likely that the operation does not get much use
out of the texture cache. It does imply, however, that rather impressive work
was done by Nvidia’s hardware designers: The theoretical peak global memory
bandwidth can very nearly be attained in real-world computations. Next, tak-
ing into account what was said in Section 5.2 about the flux-gather part of the
operator, the rather low memory throughput achieved is not too surprising–the
access pattern is (and, for a general grid, has to be) rather scattered, decreasing
the achievable bandwidth. Lastly, operator assembly, which computes linear
combination of vectors, consists mainly of global memory fetches and stores.

26

differentiation flux gather flux lifting
N KM Shared wp wi ws MB wp Shared wp wi ws
1 4 Matrix 6 2 3 4 28 Field 4 2 1
2 8 Matrix 19 1 3 2 26 Field 3 3 1
3 4 Matrix 14 2 3 3 19 Field 2 3 1
4 4 Matrix 19 2 3 2 18 Field 2 4 1
5 2 Field 1 4 1 3 15 Field 2 3 1
6 2 Field 1 4 1 1 4 Field 2 4 1
7 2 Field 2 4 1 2 8 Field 2 3 1
8 1 Field 2 4 1 1 1 Field 2 4 1
9 1 Field 2 4 1 1 2 Field 2 4 1

Table 3. Empirically optimal method parameters for each part of the DG oper-
ator at polynomial orders 1 through 9.

There is no reason why it should be unable to pin the memory subsystem to
its peak throughput. Unfortunately, we found ourselves unable to achieve this
through loop unrolling or other techniques.

For potential implementers, it may be interesting to know which exact pa-
rameters were used to obtain the results in this section. The parameters of
interest include the generic work distribution tuple (wp, wi, ws) for each sub-
task, the microblock size KM , the gather block size MB , and which of the
matrix- or field-in-shared approaches was used at what order. Table 3 presents
this data. It is peculiar how little regularity there is in this data set. Despite
a sequence of attempts, we failed to come up with a heuristic that would pre-
dict performance accurately. This led us to develop an empirical optimization
procedure that finds the data of Table 3 in an automated fashion through a
sequence of synthetic and real-world benchmarks. A detailed study of this and
other optimization procedures as well as of the toolkit we constructed to enable
them will be the subject of a forthcoming report. For now, we restrict ourselves
to displaying the results of one such procedure. Figure 10(b) displays the run
time obtained for element-local differentiation employing microblocking and the
matrix-in-shared strategy at order N = 4. The objective is to find the work
distribution parameter tuple (wp, wi, ws) that leads to an empirically short run
time for this part of the operator. It should be stressed that all runs depicted
in the figure perform the same amount of work. From Table 3 we see that in
this particular instance, an optimum was found at (wp, wi, ws) = (19, 2, 3). Un-
doubtedly, with better knowledge of the hardware, many of the odd-looking ups
and downs in Figure 10(b) could be understood. Given the published documen-
tation however, we are mostly left to take the results at face value. Luckily, if
one were to randomly choose a configuration from the portrayed set, in all like-
lihood the resulting operation would at most take about 20 per cent longer than
the optimal one chosen here. On the other hand, with some bad luck one may
also encounter a configuration that makes the computation take about twice as

27

1 2 3 4 5 6 7 8 9
Polynomial Order N

0

50

100

150

200

250

300

G
Fl

o
p
s/

s

with matrix-in-shared, with MB
with matrix-in-shared, no MB
no matrix-in-shared, with MB
no matrix-in-shared, no MB

(a) Performance in GFlops/s achieved at
various polynomial orders, for different sim-
plified implementations of DG on CUDA.

0 5000 10000 15000 20000
K

0

50

100

150

200

250

G
Fl

o
p
s/

s

N=2
N=4
N=6

(b) Mesh-dependent scaling of discontinu-
ous Galerkin on Nvidia GPUs.

Figure 11. Performance characteristics of DG on Nvidia graphics hardware,
continued.

long.
From Table 3 we can also gather that the field-in-shared strategy with a wide

variety of work distribution parameters is found to deliver the best performance
at all orders for flux lifting, as well as for higher-order element-local differenti-
ation. This is plausible behavior and was already discussed in Section 5.4. It is
therefore reasonable to ask what would be lost if the matrix-in-shared approach
were omitted from a GPU DG implementation entirely. Also, we have seen
in a number of sections that the introduction of microblocks into the method
brings about some mild complications, particularly in the form of shared mem-
ory bank conflicts, so one may be compelled to ask how much is lost by ignoring
microblocks and simply padding each element to the nearest alignment bound-
ary. The remaining performance after restricting our implementation to not use
one or both of these optimizations can be seen in Figure 11(a). Examination
of this figure leads to the conclusion that the work of implementing a matrix-
in-shared strategy is likely only worthwhile if one is particularly interested in
running GPU-DG at a few specific low orders. The benefit of employing mir-
coblocking, on the other hand, is pervasive and fairly substantial. It stretches
to far higher orders than one might suspect at first, given the growth of the
involved operands.

Note that these conclusions apply only to the algorithms exactly as described
so far. If even one simple trick is omitted from an implementation, tradeoffs
may shift dramatically. For example, omitting the thread ordering trick from
Section 5.2 makes a matrix-in-shared strategy optimal for differentiation up to
order six.

Finally, we note that the performance results in this section depend on the
size of the problem being worked on. A very small problem may, for example,
not offer enough opportunity to properly occupy all the processing cores that
the hardware provides. Figure 11(b) reveals that even relatively small problems

28

Figure 12. A sample scattering problem solved using the methods described in
the text. The incident plane-wave electric field is shown as pseudocolor values on
the scatterer, while the scattered electric field is shown as arrows. The computa-
tion was performed at order N = 4 on a mesh of K = 78745 elements using an
incident-field formulation [10] and characteristic absorbing boundary conditions.
It achieved and sustained more than 160 GFlops/s.

achieve decent performance. In addition, we observe that this scaling effect is
apparently not just governed by the number of elements present, but also by
the order N , which influences the number of flops per DOF in the method. We
conclude that as soon as there is a certain amount of floating point work to be
done per timestep, the method will perform fine.

7. Conclusions

In this paper, we have described and evaluated a variety of techniques for
performing discontinuous Galerkin simulations on recent Nvidia graphics pro-
cessors. We have adapted a number of pre-existing DG codes for the GPU,
enabling a thorough comparison of strategies for mapping the method onto the
hardware. A final code was written that combines the insights gained from its
precursors. This code implements the strategies of Sections 4 and 5 and was
used to obtain the results in Section 6.

We have shown that, using our strategies, high-order DG methods can reach
double-digit percentages of published theoretical peak performance values for
the hardware under consideration. DG computations on GPUs see speed-up
factors just short of two orders of magnitude. This speed increase translates
directly into an increase of the size of the problem that can be treated using these
methods. A single compute device can now do work that previously required a
roomful of computing hardware. Alternatively, a cluster of machines equipped
with these cards can run simulations that were previously outside the reach of all
but the largest supercomputers. This lets the size and complexity of simulations
that researchers can afford on a given hardware budget jump significantly.

To make these speed gains accessible, we have provided detailed advice for
potential implementers who need to achieve a trade-off between computing per-
formance and implementation effort. The data provided in Section 6 will help

29

them make informed implementation decisions by allowing them to predict the
computational speed achieved by their implementations.

We will be extending this work to make use of double precision floating point
support that has become available on recent Nvidia hardware. In addition, we
would like to broaden the applicability of our methods by exploring their use
for nonlinear conservation laws as well as elliptic problems.

Many-core computing presents a rare opportunity, and we feel that discon-
tinuous Galerkin methods have a number of unique characteristics that make
them unusually suitable for many-core platforms. In the past, users have chosen
low-order methods because of the perceived expense involved in running sim-
ulations at a high order of accuracy. While this perception was questionable
even in the past, we feel that many-core architectures disproportionately favor
high order and significantly drive down its relative cost. Moreover, unlike most
other numerical schemes for solving partial differential equations, DG methods
make the order of accuracy a tunable parameter. These factors combine to give
the user a maximum of control over both performance and accuracy.

7.1. Acknowledgments
The authors gratefully acknowledge the support of AFOSR under grant num-

ber FA9550-05-1-0473. The opinions expressed are the views of the authors.
They do not necessarily reflect the official position of the funding agencies.

We would like to thank Nvidia Corporation, who, upon completion of this
work, provided us with a generous hardware donation for further research.

We would also like to thank Nico Gödel, Akil Narayan, and Lucas Wilcox
who provided helpful insights in numerous discussions.

Meshes used in this work were generated using TetGen [20]. The surface
mesh for Figure 6 originates in the FlightGear flight simulator and was processed
using Blender and MeshLab, a tool developed with the support of the Epoch
European Network of Excellence.

30

A. Index of Notation

Symbol Meaning See
dxen x rounded up to the nearest multiple of n. 5.1
[a, b〉 The set of integers from the half-open interval

[a, b).
5.1

d The number of dimensions. 2
n The number of unknowns in the conservation law

(1).
4

N Polynomial degree of the approximation space. 2
Np Number of modes/points in local expansion. 4
Nfp Number of facial nodes in reference element. 4
Nf Number of faces in the reference element. 4
k Used to refer to element numbers. 2
K Total number of elements. 2
Dk The kth finite element. 2
I The unit finite element. 2.1
Ψk The local-to-global map for element k. 2.1
Mk, Mk,A, Lk Global mass, face mass and lifting matrices for

element k.
2

Sk,∂ν , Dk,∂ν νth global stiffness and differentiation matrices. 2
M , MA, L Reference mass, face mass and lifting matrices. 2.1
S∂µ, D∂µ µth reference stiffness and differentiation matri-

ces.
2.1

ν Used to index global derivatives. 2.1
µ Used to index local derivatives. 2.1
T Thread scheduling (“warp”) granularity. 3
KM Number of elements in one microblock. 4
NpM Number of volume DOFs in a microblock after

padding.
4

NfM Number of face DOFs in a microblock after
padding.

5.2

MB Number of microblocks in one flux-gather block. 5.3
nM Total number of microblocks. (= dK/KMe) 4
NR Row count of a matrix segment. 5.4
wp The number of work units one block processes in

parallel, in different threads.
4

wi The number of work units one block processes
inline, in the same thread.

4

ws The number of work units one block processes
sequentially, in the same thread.

4

tx, ty, tz Thread indices in a thread block. 3
bx, by Block indices in an execution grid. 3

31

References

[1] Timothy Barth and Timothy Knight. A Streaming Language Implementa-
tion of the Discontinuous Galerkin Method. Technical Report 20050184165,
NASA Ames Research Center, 2005.

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan. Brook for GPUs: stream computing on graphics hardware. In
Int. Conf. on Computer Graphics and Interactive Techniques, pages 777–
786. ACM New York, NY, USA, 2004.

[3] M. H. Carpenter and C. A. Kennedy. Fourth-order 2N-storage Runge-Kutta
schemes. Technical report, NASA Langley Research Center, 1994.

[4] B. Cockburn, S. Hou, and C. W. Shu. The Runge-Kutta Local Projection
Discontinuous Galerkin Finite Element Method for Conservation Laws. IV:
The Multidimensional Case. Math. Comp., 54:545–581, 1990.

[5] International Electrotechnical Commission. Letter symbols to be used in
electrical technology - Part 2: Telecommunications and electronics. Tech-
nical report, International Electrotechnical Commission, Geneva, Switzer-
land, November 2000.

[6] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labonté, J. H. Ahn,
N. Jayasena, U. J. Kapasi, A. Das, and J. Gummaraju. Merrimac: Su-
percomputing with streams. In Proceedings of the ACM/IEEE SC2003
Conference (SC’03), volume 1, 2003.

[7] D. Göddeke, R. Strzodka, and S. Turek. Accelerating double precision FEM
simulations with GPUs. In Proceedings of ASIM, 2005.

[8] Khronos OpenCL Working Group. The OpenCL 1.0 Specification. Khronos
Group, December 2008.

[9] Nail A. Gumerov and Ramani Duraiswami. Fast multipole methods on
graphics processors. J. Comp. Phys., 227:8290–8313, September 2008. doi:
10.1016/j.jcp.2008.05.023.

[10] J. S. Hesthaven and T. Warburton. Nodal High-Order Methods on Un-
structured Grids: I. Time-Domain Solution of Maxwell’s Equations. J.
Comp. Phys., 181:186–221, September 2002. doi: 10.1006/jcph.2002.7118.

[11] J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods:
Algorithms, Analysis, and Applications. Springer, first edition, November
2007. ISBN 0387720650.

[12] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral Methods for Time-
Dependent Problems. Cambridge University Press, 2007. ISBN 0521792118.

[13] J. D. Jackson. Classical Electrodynamics. Wiley, third edition, July 1998.
ISBN 047130932X.

32

[14] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs. SIAM J. Sci. Comp., 20:359–392, 1999.

[15] S.E. Krakiwsky, L.E. Turner, and M.M. Okoniewski. Acceleration of finite-
difference time-domain (FDTD) using graphics processor units (GPU). In
Microwave Symposium Digest, 2004 IEEE MTT-S International, volume 2,
pages 1033–1036 Vol.2, 2004. ISBN 0149-645X. doi: 10.1109/MWSYM.
2004.1339160.

[16] W. Li, X. Wei, and A. Kaufman. Implementing Lattice Boltzmann com-
putation on graphics hardware. The Visual Computer, 19:444–456, 2003.

[17] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. Nvidia Tesla: A
Unified Graphics and Computing Architecture. Micro, IEEE, 28:39–55,
2008. ISSN 0272-1732. doi: 10.1109/MM.2008.31.

[18] Nvidia Corporation. NVIDIA CUDA 2.0 Compute Unified Device Archi-
tecture Programming Guide. Nvidia Corporation, Santa Clara, USA, June
2008.

[19] W. H. Reed and T. R. Hill. Triangular mesh methods for the neutron
transport equation. Technical report, Los Alamos Scientific Laboratory,
Los Alamos, 1973.

[20] H. Si and K. Gaertner. Meshing Piecewise Linear Complexes by Con-
strained Delaunay Tetrahedralizations. In Proc. of the 14th International
Meshing Roundtable, pages 147–163. Springer, 2005.

[21] J. Stratton, S. Stone, and W. Hwu. MCUDA: An Efficient Implementation
of CUDA Kernels on Multi-cores. Technical report, University of Illinois
at Urbana-Champaign, Urbana-Champaign, IL, USA, March 2008.

[22] Various authors. Comparison of Nvidia graphics process-
ing units — Wikipedia, The Free Encyclopedia, 2008. URL
http://en.wikipedia.org/w/index.php?title=Comparison of
Nvidia graphics processing units&oldid=248858931. [Online; ac-
cessed 9-November-2008].

[23] T. Warburton. An explicit construction of interpolation nodes on the sim-
plex. J. Eng. Math., 56:247–262, 2006.

[24] T. Warburton and T. Hagstrom. Taming the CFL Number for Discontin-
uous Galerkin Methods on Structured Meshes. SIAM J. Num. Anal., 46:
3151–3180, 2008. doi: 10.1137/060672601.

[25] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical op-
timizations of software and the ATLAS project. Parallel Computing, 27:
3–35, 2001.

33

