104 research outputs found
Probing the Nature of Ultra-Steep Spectrum Radio Sources
Here we present, first results from e-VLBI observations at 18 cm on a small sample of ultra-steep spectrum sources (spectral index between 74 MHz and 325 MH
SKA studies of nearby galaxies : star-formation, accretion processes and molecular gas across all environments
Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike LicenceThe SKA will be a transformational instrument in the study of our local Universe. In particular, by virtue of its high sensitivity (both to point sources and diffuse low surface brightness emission), angular resolution and the frequency ranges covered, the SKA will undertake a very wide range of astrophysical research in the field of nearby galaxies. By surveying vast numbers of nearby galaxies of all types with Jy sensitivity and sub-arcsecond angular resolutions at radio wavelengths, the SKA will provide the cornerstone of our understanding of star-formation and accretion activity in the local Universe. In this chapter we outline the key continuum and molecular line science areas where the SKA, both during phase-1 and when it becomes the full SKA, will have a significant scientific impact.Peer reviewedFinal Published versio
PKS 1413+135: OH and H i at z = 0.247 with MeerKAT
The BL Lac object PKS 1413+135 was observed by the Large Survey Project MeerKAT Absorption Line Survey (MALS) in the L-band, at 1139 MHz and 12931379 MHz, targeting the HI and OH lines in absorption at z=0.24671. The radio continuum might come from the nucleus of the absorbing galaxy or from a background object at redshift lower than 0.5, as suggested by the absence of gravitational images. The HI absorption line is detected at a high signal-To-noise ratio, with a narrow central component, and with a red wing, confirming previous results. The OH 1720 MHz line is clearly detected in (maser) emission, peaking at a velocity shifted by-10 to-15 km s-1 with respect to the HI peak. The 1612 MHz line is lost due to radio frequency interference. The OH 1667 MHz main line is tentatively detected in absorption, but not the 1665 MHz line. Over 30 years a high variability is observed in optical depths, due to the rapid changes of the line of sight caused by the superluminal motions of the radio knots. The HI line has varied by 20% in depth, while the OH-1720 MHz depth has varied by a factor of ∼3. The position of the central velocity and the widths also varied. The absorbing galaxy is an early-Type spiral (maybe S0) seen edge-on, with a prominent dust lane, covering the whole disk. Given the measured mass concentration and the radio continuum size at centimeter wavelengths (100 mas corresponding to 400 pc at z=0.25), the width of the absorption lines from the nuclear regions are expected up to 250 km s-1. The narrowness of the observed lines (< 15 km s-1) suggests that the absorption comes from an outer gas ring, as frequently observed in S0 galaxies. The millimetric lines are even narrower (< 1 km s-1), which corresponds to the continuum size restricted to the core. The radio core is covered by individual 1 pc molecular clouds, whose column density is a few 1022 cm-2, which is compatible with the gas screen detected in X-rays
Discovery of Hydrogen Radio Recombination Lines at z = 0.89 toward PKS 1830-211
We report the detection of stimulated hydrogen radio recombination line (RRL) emission from ionized gas in a z = 0.89 galaxy using 580-1670 MHz observations from the MeerKAT Absorption Line Survey. The RRL emission originates in a galaxy that intercepts and strongly lenses the radio blazar PKS 1830−211 (z = 2.5). This is the second detection of RRLs outside of the local Universe and the first clearly associated with hydrogen. We detect effective H144α (and H163α) transitions at observed frequencies of 1156 (798) MHz by stacking 17 (27) RRLs with 21σ (14σ) significance. The RRL emission contains two main velocity components and is coincident in velocity with H i 21 cm and OH 18 cm absorption. We use the RRL spectral line energy distribution and a Bayesian analysis to constrain the density (n e ) and the volume-averaged path length (ℓ) of the ionized gas. We determine log ( n e ) = 2.0 − 0.7 + 1.0 cm−3 and log ( ℓ ) = − 0.7 − 1.1 + 1.1 pc toward the northeast (NE) lensed image, likely tracing the diffuse thermal phase of the ionized ISM in a thin disk. Toward the southwest (SW) lensed image, we determine log ( n e ) = 3.2 − 1.0 + 0.4 cm−3 and log ( ℓ ) = − 2.7 − 0.2 + 1.8 pc, tracing gas that is more reminiscent of H scii regions. We estimate a star formation (surface density) rate of ΣSFR ∼ 0.6 M ⊙ yr−1 kpc−2 or SFR ∼ 50 M ⊙ yr−1, consistent with a star-forming main-sequence galaxy of M ⋆ ∼ 1011 M ⊙. The discovery presented here opens up the possibility of studying ionized gas at high redshifts using RRL observations from current and future (e.g., SKA and ngVLA) radio facilities
MALS SALT-NOT survey of MIR-selected powerful radio-bright AGN at 0<z<3.5
We present results of an optical spectroscopic survey using SALT and NOT to
build a WISE mid-infrared color-based, dust-unbiased sample of powerful
radio-bright (200 mJy at 1.4 GHz) AGN for the MeerKAT Absorption Line Survey
(MALS). Our sample has 250 AGN (median ) showing emission lines, 26 with
no emission lines, and 27 without optical counterparts. Overall, our sample is
fainter (=0.6 mag) and redder (=0.2 mag) than
radio-selected quasars, and representative of fainter quasar population
detected in optical surveys. About 20% of the sources are narrow line AGN
(NLAGN) 65% of these, at are galaxies without strong nuclear
emission, and 10% at , have emission line ratios similar to radio
galaxies. The farthest NLAGN in our sample is M15132524 (),
and the largest (size330 kpc) is M09093133 (). We
discuss in detail 110 AGN at . Despite representing the radio
loudest quasars (median =3685), their Eddington ratios are similar to the
SDSS quasars having lower . We detect 4 CIV BALQSOs, all among AGN with
least , and highest black hole masses and Eddington ratios. The BAL
detection rate (%) is consistent with that seen in extremely
powerful ( WHz) quasars. Using optical light-curves,
radio polarization and -ray detections, we identify 7 high-probability
BL Lacs. We also summarize the full MALS footprint to search for HI 21-cm and
OH 18-cm lines at .Comment: 62 pages, 15 figures and 3 tables; accepted in ApJ (updated the
redshift of M1312-2026 to z=0.977
The MeerKAT international GHz tiered extragalactic exploration (MIGHTEE) survey
The MIGHTEE large survey project will survey four of the most well-studied extragalactic deep fields, totalling 20 square degrees to µJy sensitivity at Giga-Hertz frequencies, as well as an ultra-deep image of a single ∼1 deg2 MeerKAT pointing. The observations will provide radio continuum, spectral line and polarisation information. As such, MIGHTEE, along with the excellent multi-wavelength data already available in these deep fields, will allow a range of science to be achieved. Specifically, MIGHTEE is designed to significantly enhance our understanding of, (i) the evolution of AGN and star-formation activity over cosmic time, as a function of stellar mass and environment, free of dust obscuration; (ii) the evolution of neutral hydrogen in the Universe
and how this neutral gas eventually turns into stars after moving through the molecular phase, and how efficiently this can fuel AGN activity; (iii) the properties of cosmic magnetic fields and how they evolve in clusters, filaments and galaxies. MIGHTEE will reach similar depth to the planned SKA all-sky survey, and thus will provide a pilot to the cosmology experiments that will
be carried out by the SKA over a much larger survey volume
Signal transduction underlying the control of urinary bladder smooth muscle tone by muscarinic receptors and β-adrenoceptors
The normal physiological contraction of the urinary bladder, which is required for voiding, is predominantly mediated by muscarinic receptors, primarily the M3 subtype, with the M2 subtype providing a secondary backup role. Bladder relaxation, which is required for urine storage, is mediated by β-adrenoceptors, in most species involving a strong β3-component. An excessive stimulation of contraction or a reduced relaxation of the detrusor smooth muscle during the storage phase of the micturition cycle may contribute to bladder dysfunction known as the overactive bladder. Therefore, interference with the signal transduction of these receptors may be a viable approach to develop drugs for the treatment of overactive bladder. The prototypical signaling pathway of M3 receptors is activation of phospholipase C (PLC), and this pathway is also activated in the bladder. Nevertheless, PLC apparently contributes only in a very minor way to bladder contraction. Rather, muscarinic-receptor-mediated bladder contraction involves voltage-operated Ca2+ channels and Rho kinase. The prototypical signaling pathway of β-adrenoceptors is an activation of adenylyl cyclase with the subsequent formation of cAMP. Nevertheless, cAMP apparently contributes in a minor way only to β-adrenoceptor-mediated bladder relaxation. BKCa channels may play a greater role in β-adrenoceptor-mediated bladder relaxation. We conclude that apart from muscarinic receptor antagonists and β-adrenoceptor agonists, inhibitors of Rho kinase and activators of BKCa channels may have potential to treat an overactive bladder
- …