4 research outputs found

    Phylogeography and Genetic Variation of Triatoma dimidiata, the Main Chagas Disease Vector in Central America, and Its Position within the Genus Triatoma

    Get PDF
    Chagas disease is a serious parasitic disease of Latin America. Human contamination in poor rural or periurban areas is mainly attributed to haematophagous triatomine insects. Triatoma includes important vector species, as T. dimidiata in Central and Meso-America. DNA sequences, phylogenetic methods and genetic variation analyses are combined in a large interpopulational approach to investigate T. dimidiata and its closest relatives within Triatoma. The phylogeography of Triatoma indicates two colonization lineages northward and southward of the Panama isthmus during ancient periods, with T. dimidiata presenting a large genetic variability related to evolutionary divergences from a Mexican-Guatemalan origin. One clade remained confined to Yucatan, Chiapas, Guatemala and Honduras, with extant descendants deserving species status: T. sp. aff. dimidiata. The second clade gave rise to four subspecies: T. d. dimidiata in Guatemala and Mexico (Chiapas) up to Honduras, Nicaragua, Providencia island, and introduced into Ecuador; T. d. capitata in Panama and Colombia; T. d. maculipennis in Mexico and Guatemala; and T. d. hegneri in Cozumel island. This taxa distinction may facilitate the understanding of the diversity of vectors formerly included under T. dimidiata, their different transmission capacities and the disease epidemiology. Triatoma dimidiata will offer more problems for control than T. infestans in Uruguay, Chile and Brazil, although populations in Ecuador are appropriate targets for insecticide-spraying

    Prevalence of intestinal parasites, with emphasis on the molecular epidemiology of Giardia duodenalis and Blastocystis sp., in the Paranaguá Bay, Brazil: a community survey

    Get PDF
    BACKGROUND: Intestinal protozoan parasites are major contributors to the global burden of gastrointestinal disease causing significant socioeconomic consequences. Children living in resource-poor settings with restricted access to water and sanitary services are particularly at risk of these infections. METHODS: A prospective, community-based, cross-sectional survey was conducted in Paraná (southern Brazil) between May 2015 and May 2016. A total of 766 stool samples were individually collected from volunteers (male/female ratio: 0.99; age range: 0-76 years) and used for investigating the presence of intestinal helminth and protozoan species by routine microscopic procedures including the Kato-Katz and modified Ritchie concentration methods and the Ziehl-Neelsen stain technique. Quantitative real-time PCR confirmed microscopy-positive samples for Giardia duodenalis and the assemblages and sub-assemblages determined by multilocus sequence-based genotyping of the glutamate dehydrogenase (gdh) and β-giardin (bg) genes of the parasite. Identification of Blastocystis subtypes was carried out by amplification and sequencing of a partial fragment of the small-subunit ribosomal RNA gene (SSU rDNA) of this heterokont microorganism. RESULTS: Overall, 46.1% (353/766) of the participants were infected/colonised by at least one intestinal parasite/commensal species. Protozoan and helminth species were detected in 42.7% and 10.1% of the surveyed population, respectively. Blastocystis sp. (28.2%), Endolimax nana (14.9%), and Giardia duodenalis (11.0%) were the most prevalent species found among protozoans and Ascaris lumbricoides (5.0%), Trichuris trichiura (4.6%) and hookworms (1.0%) among helminths. A total of 38 G. duodenalis-positive samples were genotyped at gdh and bg markers, revealing the presence of the sub-assemblages AII (47.4%), AII/AIII (2.6%), BIII (5.3%), BIV (26.3%) and BIII/BIV (13.1%). Two samples (5.3%) were only identified as assemblage B. AII was predominantly found in females aged 5-9 years and was associated with a higher likelihood of reporting gastrointestinal symptoms. A total of 102 Blastocystis-positive samples were successfully subtyped at the SSU rRNA gene revealing the presence of ST1 (36.3%), ST2 (15.7%), ST3 (41.2%), ST4 (2.9%), ST6 (1.0%) and ST8 (2.9%). CONCLUSIONS: Data presented here indicate that enteric parasites still represent a pressing health concern in Paraná, Brazil, probably due to sub-optimal water, sanitation and hygiene conditions. A mostly anthroponotic origin is suspected for G. duodenalis and Blastocystis sp. infections.This study was funded by the Health Institute Carlos III (ISCIII), Ministry of Economy and Competitiveness (Spain) - Collaborative Research Network on Tropical Diseases (RICET) and the European Regional Development Fund (ERDF) under project RD12/0018/0013. Additional funding was also provided by the ISCIII under project CP12/03081 and by the Secretária Municipal de Saúde de Paranaguá (Paraná), Brazil.S

    Identification and Molecular Characterization of Four New <i>Blastocystis</i> Subtypes Designated ST35-ST38

    Get PDF
    Three recent studies of Blastocystis epidemiology in mammalian hosts identified four novel sequences that appeared to share B. lapemi as the most similar sequence. However, full-length ssu rRNA gene sequences were not available to confirm the validity of these new subtypes. In the present study, Nanopore MinION sequencing was used to obtain full-length reference sequences for each of the new subtypes. Additionally, phylogenetic analyses and pairwise distance comparisons were performed to confirm the validity of each of these new subtypes. We propose that the novel sequences described in this study should be assigned the subtype designations ST35-ST38. The full-length reference sequences of ST35-ST38 will assist in accurate sequence descriptions in future studies of Blastocystis epidemiology and subtype diversity
    corecore