4,641 research outputs found
Tunable biohybrid hydrogels from coacervation of hyaluronic acid and PEO‐based block copolymers
Accurately tuning the macroscopic properties of biopolymer‐based hydrogels remains challenging due to the ill‐defined molecular architecture of the natural building blocks. Here, we report a biohybrid coacervate hydrogel, combining the biocompatibility and biodegradability of naturally occurring hyaluronic acid (HA) with the tunability of a synthetic polyethylene oxide (PEO) ‐based ABA‐triblock copolymer. Coacervation of the cationic ammonium or guanidinium‐functionalized copolymer A‐blocks with the anionic HA leads to hydrogel formation. Both mechanical properties and water content of the self‐healing hydrogels can be controlled independently by altering the copolymer structure. By controlling the strength of the interaction between the polymer network and small‐molecule cargo, both release rate and maximum release are controlled. Finally, we show that coacervation of HA and the triblock copolymer leads to increased biostability upon exposure to hyaluronidase. We envision that noncovalent crosslinking of HA hydrogels through coacervation is an attractive strategy for the facile synthesis of tunable hydrogels for biomedical applications
Thermal histories of the samples of two KOSI comet nucleus simulation experiments
Temperatures recorded during two KOSI comet nucleus simulation experiments strongly suggest that heat transport by vapor flow into the interior of the sample is very important. Two comet nucleus simulation experiments have been done by the KOSI team in a big space simulator. The thermal evolution of the sample during insolation and the results of simplified thermal evolution calculations are discussed. The observed thermal histories cannot be explained by a simple model with heat transferred by heat conduction at a constant conductivity, so a coupled heat and mass transfer problem was considered. The porous ice matrix was assumed to have a constant thermal conductivity and to be in thermal equilibrium with vapor in the pores, the internal pressure being the vapor pressure. The vapor was modelled as an ideal gas because, at the temperatures relevant to the problem, the mean free path length of the vapor molecules is large in comparison with the pore dimensions. The heat capacity at constant volume per unit mass of the two phase mixture was also assumed constant. The vapor was allowed to flow and transfer heat in response to an internal pressure gradient
Emissionsspektrographische Untersuchungen an Planktonproben bekannter biologischer Zussamensetzung. EUR 2771. = Investigations by emission spectrography on plankton samples of known biological composition. EUR 2771.
Fabricating High-Resolution X-Ray Collimators
A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy
Modifications of comet materials by the sublimation process: Results from simulation experiments
An active comet like comet Halley loses by sublimation a surface layer of the order of 1 m thickness per perihelion passage. In situ measurements show that water ice is the main constituent which contributes to the gas emission although even more volatile species (CO, NH3, CH4, CO2 etc.) have been identified. Dust particles which were embedded in the ices are carried by the sublimating gases. Measurements of the chemical composition of cometary grains indicate that they are composed of silicates of approximate chondritic composition and refractory carbonaceous material. Comet simulation experiments show that significant modifications of cometary materials occur due to sublimation process in near surface layers which have to be taken into account in order to derive the original state of the material
Immunogenicity of DTaP-IPV-Hib and MenC vaccines in the UK when administered with a 13-valent pneumococcal conjugate vaccine
Endogenous fantasy and learning in digital games.
Many people believe that educational games are effective because they motivate children to actively engage in a learning activity as part of playing the game. However, seminal work by Malone (1981), exploring the motivational aspects of digital games, concluded that the educational effectiveness of a digital game depends on the way in which learning content is integrated into the fantasy context of the game. In particular, he claimed that content which is intrinsically related to the fantasy will produce better learning than that which is merely extrinsically related. However, this distinction between intrinsic and extrinsic (or endogenous and exogenous) fantasy is a concept that has developed a confused standing over the following years. This paper will address this confusion by providing a review and critique of the empirical and theoretical foundations of endogenous fantasy, and its relevance to creating educational digital games. Substantial concerns are raised about the empirical basis of this work and a theoretical critique of endogenous fantasy is offered, concluding that endogenous fantasy is a misnomer, in so far as the "integral and continuing relationship" of fantasy cannot be justified as a critical means of improving the effectiveness of educational digital games. An alternative perspective on the intrinsic integration of learning content is described, incorporating game mechanics, flow and representations
Digital afx: digital dressing and affective shifts in Sin City and 300
In Sin City (Robert Rodriguez, 2005) and 300 (Zack Snyder, 2006) extensive
post-production work has created stylised colour palettes, manipulated areas
of the image, and added or subtracted elements. Framing a discussion around
the terms ‘affect’ and ‘emotion’, this paper argues that the digital technologies used in Sin City and 300 modify conventional interactions between
representational and aesthetic dimensions. Brian Massumi suggests affective
imagery can operate through two modes of engagement. One mode is
embedded in a meaning system, linked to a speci?c emotion. The second
is understood as an intensi?cation whereby a viewer reacts but that reaction is
not yet gathered into an alignment with meaning. The term ‘digital afx’
is used to describe manipulations that produce imagery allowing these two
modes of engagement to coexist. Digital afx are present when two competing
aesthetic strategies remain equally visible within sequences of images. As a
consequence the afx mingle with and shift the content of representation
- …
