216 research outputs found

    Primary Emissions of Submicron and Carbonaceous Particles in Europe and the Potential for their Control

    Get PDF
    The interest in submicron and specifically carbonaceous particles in the atmosphere has risen recently, largely because of their potential role as climate forcing agents. Black carbon (BC) particles absorb solar radiation and are suspected to be a significant factor contributing to climate warming. Particulate organic carbon (OC), in turn, acts as a cooling substance. In principle, all of the atmospheric BC and a large part of the OC are emitted from incomplete combustion of fossil fuels and biomass. To model the climatic effects of carbonaceous aerosols it is crucial to provide robust estimates of their emission strengths. Recent measurements of atmospheric optical depth suggest that earlier BC emission inventories may lead to over-estimations of atmospheric BC over Europe. This paper describes estimates of emissions of primary submicron particles, BC and OC in Europe, applying an extended PM-module of the RAINS model. The European emissions in 2000 are estimated at 2.8, 0.67 and 0.99 Tg for submicron, BC and OC, respectively. The main sources are exhaust emissions from traffic and residential combustion of solid fuels, which together amount to 64 percent of the submicron emissions, 85 percent of the total BC and 81 percent of the total OC. By 2010 the emissions of all three pollutants are projected to decline by about 20 percent, largely due to implementation of the 'EURO-standards' for mobile sources and fuel switching in the residential sector

    Integrated Assessment of Black Carbon and Tropospheric Ozone

    Get PDF
    The Integrated Assessment of Black Carbon and Tropospheric Ozone looks into all aspects of anthropogeic emissions of black carbon and tropospheric ozone precursors, such as methane. It analyses the trends in emissions of these substances and the drivers of these emissions; summarizes the science of atmospheric processes where these substances are involved; discusses related impacts on the climatic sysem, human health, crops in vulnerable regions and ecosystems; and societal responses to the environmntal changes caused by those impacts. The Assessment examines a large number of potential measures to reduce harmful emissions, identifying a small set of specific measures that would likely produce the greatest benefits, and which could be implemented with currently available technology. An outlook up to 2070 is developed illustrating the benefits of those emission mitigation policies and mesures for human well-being and climate. The Assessment concludes that rapid mitigation of anthropogenic black carbon and tropospheric ozone precursor emissions would complement carbon dioxide reduction measures and would have immediate benefits for human well-being. The Assessment is intended to support informed decision making at all levels as a guide for assessment, planning and management for the future

    The effects of climate change and abatement policies on the value of natural resources in Northern Europe and in the Arctic Sea area

    Get PDF
    The impact of the climate on the Arctic plays a crucial role for Finland's, as well as other Nordic countries', current and future climatic conditions. Far-reaching and multi-faceted changes are taking place in the Arctic, which have profound consequences for the region's economic and political significance in international relations. The review analyses the effects of climate change and likely climate abatement policies on the accessibility and value of natural resources in Northern Europe in the Arctic Sea area and on the logistical position of Northern Europe with a special emphasis on Finland

    Global anthropogenic emissions of particulate matter including black carbon

    Get PDF
    This paper presents a comprehensive assessment of historical (1990–2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5°  ×  0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion was the most important sector, contributing about 60 % for BC and OC, 45 % for PM2. 5, and less than 40 % for PM10, where large combustion sources and industrial processes are equally important. Global anthropogenic emissions of BC were estimated at about 6.6 and 7.2 Tg in 2000 and 2010, respectively, and represent about 15 % of PM2. 5 but for some sources reach nearly 50 %, i.e. for the transport sector. Our global BC numbers are higher than previously published owing primarily to the inclusion of new sources. This PM estimate fills the gap in emission data and emission source characterization required in air quality and climate modelling studies and health impact assessments at a regional and global level, as it includes both carbonaceous and non-carbonaceous constituents of primary particulate matter emissions. The developed emission dataset has been used in several regional and global atmospheric transport and climate model simulations within the ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) project and beyond, serves better parameterization of the global integrated assessment models with respect to representation of black carbon and organic carbon emissions, and built a basis for recently published global particulate number estimates

    Comparison and evaluation of anthropogenic emissions of SO2 and NO2 over China

    Get PDF
    Bottom-up emission inventories provide primary understanding of sources of air pollution and essential input of chemical transport models. Focusing on SO2 and NOx, we conducted a comprehensive evaluation of two widely-used anthropogenic emission inventories over China, ECLIPSE and MIX, to explore the potential sources of uncertainties and find the clues in improving emission inventories. We first compared the activity rates and emission factors used in two inventories, and investigated the reasons of differences and the impacts on emission estimates. We found that SO2 emission estimates are consistent between two inventories (with 1 % differences), while NOx emissions in ECLIPSE's estimates are 16 % lower than those of MIX. Discrepancies at sectorial and provincial level are much higher. We then examined the impacts of different inventories on model performance, by using the nested GEOS-Chem model. We finally derived top-down NOx emissions by using the NO2 columns from the Ozone Monitoring Instrument (OMI) and compared with the bottom-up estimates. To our knowledge, this is the first work where source-sector comparisons are made along with the remote sensing retrievals and chemical transport modeling. Through the comparison between bottom-up emission inventories and evaluation with top-down information, we summarized the potential directions for further improvement in inventory development

    Air quality in the mid-21st century for the city of Paris under two climate scenarios; from the regional to local scale

    Get PDF
    Ozone and PM<sub>2.5</sub> concentrations over the city of Paris are modeled with the CHIMERE air-quality model at 4 km × 4 km horizontal resolution for two future emission scenarios. A high-resolution (1 km × 1 km) emission projection until 2020 for the greater Paris region is developed by local experts (AIRPARIF) and is further extended to year 2050 based on regional-scale emission projections developed by the Global Energy Assessment. Model evaluation is performed based on a 10-year control simulation. Ozone is in very good agreement with measurements while PM<sub>2.5</sub> is underestimated by 20% over the urban area mainly due to a large wet bias in wintertime precipitation. A significant increase of maximum ozone relative to present-day levels over Paris is modeled under the "business-as-usual" scenario (+7 ppb) while a more optimistic "mitigation" scenario leads to a moderate ozone decrease (−3.5 ppb) in year 2050. These results are substantially different to previous regional-scale projections where 2050 ozone is found to decrease under both future scenarios. A sensitivity analysis showed that this difference is due to the fact that ozone formation over Paris at the current urban-scale study is driven by volatile organic compound (VOC)-limited chemistry, whereas at the regional-scale ozone formation occurs under NO<sub>x</sub>-sensitive conditions. This explains why the sharp NO<sub>x</sub> reductions implemented in the future scenarios have a different effect on ozone projections at different scales. In rural areas, projections at both scales yield similar results showing that the longer timescale processes of emission transport and ozone formation are less sensitive to model resolution. PM<sub>2.5</sub> concentrations decrease by 78% and 89% under business-as-usual and mitigation scenarios, respectively, compared to the present-day period. The reduction is much more prominent over the urban part of the domain due to the effective reductions of road transport and residential emissions resulting in the smoothing of the large urban increment modeled in the control simulation

    Sustainable wastewater management in Indonesia's fish processing industry: Bringing governance into scenario analysis

    Get PDF
    The government of Indonesia has pledged to meet ambitious greenhouse gas mitigation goals in its Nationally Determined Contribution as well as reduce water pollution through its water management policies. A set of technologies could conceivably help achieving these goals simultaneously. However, the installation and widespread application of these technologies will require knowledge on how governance affects the implementation of existing policies as well as cooperation across sectors, administrative levels, and stakeholders. This paper integrates key governance variables--involving enforcement capacity, institutional coordination and multi-actor networks--into an analysis of the potential impacts on greenhouse gases and chemical oxygen demand in seven wastewater treatment scenarios for the fish processing industry in Indonesia. The analysis demonstrates that there is an increase of 24% in both CH4 and CO2 emissions between 2015 and 2030 in the business-as-usual scenario due to growth in production volumes. Interestingly, in scenarios focusing only on strengthening capacities to enforce national water policies, expected total greenhouse gas emissions are about five times higher than in the business-as-usual in 2030; this is due to growth in CH4 emissions during the handling and landfilling of sludge, as well as in CO2 generated from the electricity required for wastewater treatment. In the scenarios where there is significant cooperation across sectors, administrative levels, and stakeholders to integrate climate and water goals, both estimated chemical oxygen demand and CH4 emissions are considerably lower than in the business-as-usual and the national water policy scenarios

    Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application

    Get PDF
    We present and discuss a new dataset of gridded emissions covering the historical period (1850-2000) in decadal increments at a horizontal resolution of 0.5 degrees in latitude and longitude. The primary purpose of this inventory is to provide consistent gridded emissions of reactive gases and aerosols for use in chemistry model simulations needed by climate models for the Climate Model Intercomparison Program #5 (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Our best estimate for the year 2000 inventory represents a combination of existing regional and global inventories to capture the best information available at this point; 40 regions and 12 sectors are used to combine the various sources. The historical reconstruction of each emitted compound, for each region and sector, is then forced to agree with our 2000 estimate, ensuring continuity between past and 2000 emissions. Simulations from two chemistry-climate models is used to test the ability of the emission dataset described here to capture long-term changes in atmospheric ozone, carbon monoxide and aerosol distributions. The simulated long-term change in the Northern mid-latitudes surface and mid-troposphere ozone is not quite as rapid as observed. However, stations outside this latitude band show much better agreement in both present-day and long-term trend. The model simulations indicate that the concentration of carbon monoxide is underestimated at the Mace Head station; however, the long-term trend over the limited observational period seems to be reasonably well captured. The simulated sulfate and black carbon deposition over Greenland is in very good agreement with the ice-core observations spanning the simulation period. Finally, aerosol optical depth and additional aerosol diagnostics are shown to be in good agreement with previously published estimates and observations
    • …
    corecore