38 research outputs found
A comparison of the clinical relevance of thallium201 and technetium-99m-methoxyisobutyl-isonitrile for the evaluation of myocardial blood flow
Thallium-201 is at present the radiotracer of choice for the clinical evaluation of myocardial blood flow. Although different technetium-99m-isonitrile agents have been synthesised recently, only 99mTc-melhoxyisobutyl-isonitrile (99mTc_MIBI) has proved to hold promise for clinical implementation. The myocardial distribution of 201TI and 99mTc_MIBI was compared in a group of 20 patients, who underwent both 201TI single photon emission computed tomography and 99mTc_MIBI study as well as coronary angiography. The sensitivity for predicting a lesion ranged from 25% to 88% in different areas of the heart and was comparable for the two radiophannaceuticals. The specificity was > 80% tor all regions except the inferior region where a specificily ot 58% obtained by 99mTc-MIBI was better than the low specificity of 17% obtained with 201TI (P< 0,008)
Changes in Invasive Pneumococcal Disease Caused by Streptococcus pneumoniae Serotype 1 Following Introduction of PCV10 and PCV13: Findings from the PSERENADE Project.
Streptococcus pneumoniae serotype 1 (ST1) was an important cause of invasive pneumococcal disease (IPD) globally before the introduction of pneumococcal conjugate vaccines (PCVs) containing ST1 antigen. The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project gathered ST1 IPD surveillance data from sites globally and aimed to estimate PCV10/13 impact on ST1 IPD incidence. We estimated ST1 IPD incidence rate ratios (IRRs) comparing the pre-PCV10/13 period to each post-PCV10/13 year by site using a Bayesian multi-level, mixed-effects Poisson regression and all-site IRRs using a linear mixed-effects regression (N = 45 sites). Following PCV10/13 introduction, the incidence rate (IR) of ST1 IPD declined among all ages. After six years of PCV10/13 use, the all-site IRR was 0.05 (95% credibility interval 0.04–0.06) for all ages, 0.05 (0.04–0.05) for <5 years of age, 0.08 (0.06–0.09) for 5–17 years, 0.06 (0.05–0.08) for 18–49 years, 0.06 (0.05–0.07) for 50–64 years, and 0.05 (0.04–0.06) for ≥65 years. PCV10/13 use in infant immunization programs was followed by a 95% reduction in ST1 IPD in all ages after approximately 6 years. Limited data availability from the highest ST1 disease burden countries using a 3+0 schedule constrains generalizability and data from these settings are needed
Global landscape review of serotype-specific invasive pneumococcal disease surveillance among countries using PCV10/13: The pneumococcal serotype replacement and distribution estimation (PSERENADE) project
Serotype-specific surveillance for invasive pneumococcal disease (IPD) is essential for assessing the impact of 10- and 13-valent pneumococcal conjugate vaccines (PCV10/13). The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project aimed to evaluate the global evidence to estimate the impact of PCV10/13 by age, product, schedule, and syndrome. Here we systematically characterize and summarize the global landscape of routine serotype-specific IPD surveillance in PCV10/13-using countries and describe the subset that are included in PSERENADE. Of 138 countries using PCV10/13 as of 2018, we identified 109 with IPD surveillance systems, 76 of which met PSERENADE data collection eligibility criteria. PSERENADE received data from most (n = 63, 82.9%), yielding 240,639 post-PCV10/13 introduction IPD cases. Pediatric and adult surveillance was represented from all geographic regions but was limited from lower income and high-burden countries. In PSERENADE, 18 sites evaluated PCV10, 42 PCV13, and 17 both; 17 sites used a 3 + 0 schedule, 38 used 2 + 1, 13 used 3 + 1, and 9 used mixed schedules. With such a sizeable and generally representative dataset, PSERENADE will be able to conduct robust analyses to estimate PCV impact and inform policy at national and global levels regarding adult immunization, schedule, and product choice, including for higher valency PCVs on the horizon
Serotype distribution of remaining pneumococcal meningitis in the mature PCV10/13 period: Findings from the PSERENADE Project
Pneumococcal conjugate vaccine (PCV) introduction has reduced pneumococcal meningitis incidence. The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project described the serotype distribution of remaining pneumococcal meningitis in countries using PCV10/13 for least 5-7 years with primary series uptake above 70%. The distribution was estimated using a multinomial Dirichlet regression model, stratified by PCV product and age. In PCV10-using sites (N = 8; cases = 1141), PCV10 types caused 5% of cases <5 years of age and 15% among ≥5 years; the top serotypes were 19A, 6C, and 3, together causing 42% of cases <5 years and 37% ≥5 years. In PCV13-using sites (N = 32; cases = 4503), PCV13 types caused 14% in <5 and 26% in ≥5 years; 4% and 13%, respectively, were serotype 3. Among the top serotypes are five (15BC, 8, 12F, 10A, and 22F) included in higher-valency PCVs under evaluation. Other top serotypes (24F, 23B, and 23A) are not in any known investigational product. In countries with mature vaccination programs, the proportion of pneumococcal meningitis caused by vaccine-in-use serotypes is lower (≤26% across all ages) than pre-PCV (≥70% in children). Higher-valency PCVs under evaluation target over half of remaining pneumococcal meningitis cases, but questions remain regarding generalizability to the African meningitis belt where additional data are needed
Neutrophil degranulation, NETosis and platelet degranulation pathway genes are co-induced in whole blood up to six months before tuberculosis diagnosis
Data Availability: The full datasets can be obtained from the Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) as GSE94438 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94438) and GSE89403 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89403). These details are also provided in the Methods. Additional data on PET-CT scores accompany the revised document as S1 Table (https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278295#pone.0278295.s001).The authors acknowledge the Centre for High Performance Computing (CHPC), South Africa, for providing computational resources to this research project.Mycobacterium tuberculosis (M.tb) causes tuberculosis (TB) and remains one of the leading causes of mortality due to an infectious pathogen. Host immune responses have been implicated in driving the progression from infection to severe lung disease. We analyzed longitudinal RNA sequencing (RNAseq) data from the whole blood of 74 TB progressors whose samples were grouped into four six-month intervals preceding diagnosis (the GC6-74 study). We additionally analyzed RNAseq data from an independent cohort of 90 TB patients with positron emission tomography-computed tomography (PET-CT) scan results which were used to categorize them into groups with high and low levels of lung damage (the Catalysis TB Biomarker study). These groups were compared to non-TB controls to obtain a complete whole blood transcriptional profile for individuals spanning from early stages of M.tb infection to TB diagnosis. The results revealed a steady increase in the number of genes that were differentially expressed in progressors at time points closer to diagnosis with 278 genes at 13–18 months, 742 at 7–12 months and 5,131 detected 1–6 months before diagnosis and 9,205 detected in TB patients. A total of 2,144 differentially expressed genes were detected when comparing TB patients with high and low levels of lung damage. There was a large overlap in the genes upregulated in progressors 1–6 months before diagnosis (86%) with those in TB patients. A comprehensive pathway analysis revealed a potent activation of neutrophil and platelet mediated defenses including neutrophil and platelet degranulation, and NET formation at both time points. These pathways were also enriched in TB patients with high levels of lung damage compared to those with low. These findings suggest that neutrophils and platelets play a critical role in TB pathogenesis, and provide details of the timing of specific effector mechanisms that may contribute to TB lung pathology.SM, EM, GT and GW were supported by the South African Tuberculosis Bioinformatics Initiative (SATBBI), a Strategic Health Innovation Partnership grant from the South African Medical Research Council (https://www.samrc.ac.za/) and South African Department of Science and Innovation (https://www.dst.gov.za/); no grant number. STM received funding from the EDCTP2 program (Grant Number CDF1576) supported by the European Union (http://www.edctp.org/projects-2/#). GW received funding from the South African National Research Foundation (SARChI TB Biomarkers #86535) and the South African Medical Research Council (https://www.samrc.ac.za/). SHEK, TJS and GW received funding from the Bill and Melinda Gates Foundation (Grant Numbers OPP37772 & OPP1055806), (https://www.gatesfoundation.org/) GW received funding from the Bill and Melinda Gates Foundation (Grant Number OPP51919) (https://www.gatesfoundation.org/) through the Catalysis Foundation for Health (https://catalysisfoundation.org/) AGL is supported by the NRF-CSUR (Grant Number CSUR60502163639) and by the Centre for Tuberculosis Research from the South African Medical Research Council (https://www.samrc.ac.za/). JAS is supported by a Clinician Scientist Fellowship (Grant Number MR/R007942/1) jointly funded by the UK Medical Research Council (MRC; https://www.ukri.org/about-us/mrc/) and the UK Department for International Development [DFID; replaced by Foreign, Commonwealth & Development Office (FCDO); https://www.gov.uk/government/organisations/foreign-commonwealth-development-office] under the MRC/DFID Concordat agreement
Impact of Intermediate Hyperglycemia and Diabetes on Immune Dysfunction in Tuberculosis
Supplementary Data:
Supplementary materials are available at Clinical Infectious Diseases online at https://academic.oup.com/cid/article/72/1/69/5857148#274319223 . Consisting of data provided by the authors to benefit the reader, the posted materials are not copyedited and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.Copyright © The Author(s) 2020. Background:
People with diabetes have an increased risk of developing active tuberculosis (TB) and are more likely to have poor TB-treatment outcomes, which may impact on control of TB as the prevalence of diabetes is increasing worldwide. Blood transcriptomes are altered in patients with active TB relative to healthy individuals. The effects of diabetes and intermediate hyperglycemia (IH) on this transcriptomic signature were investigated to enhance understanding of immunological susceptibility in diabetes-TB comorbidity.
Methods:
Whole blood samples were collected from active TB patients with diabetes (glycated hemoglobin [HbA1c] ≥6.5%) or IH (HbA1c = 5.7% to <6.5%), TB-only patients, and healthy controls in 4 countries: South Africa, Romania, Indonesia, and Peru. Differential blood gene expression was determined by RNA-seq (n = 249).
Results:
Diabetes increased the magnitude of gene expression change in the host transcriptome in TB, notably showing an increase in genes associated with innate inflammatory and decrease in adaptive immune responses. Strikingly, patients with IH and TB exhibited blood transcriptomes much more similar to patients with diabetes-TB than to patients with only TB. Both diabetes-TB and IH-TB patients had a decreased type I interferon response relative to TB-only patients.
Conclusions:
Comorbidity in individuals with both TB and diabetes is associated with altered transcriptomes, with an expected enhanced inflammation in the presence of both conditions, but also reduced type I interferon responses in comorbid patients, suggesting an unexpected uncoupling of the TB transcriptome phenotype. These immunological dysfunctions are also present in individuals with IH, showing that altered immunity to TB may also be present in this group. The TB disease outcomes in individuals with IH diagnosed with TB should be investigated further.European Union’s Seventh Framework Programme (FP7 2007-2013 - Health) under grant agreement No 305279
RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response
Improved tuberculosis diagnostics and tools for monitoring treatment response are urgently needed. We developed a robust and simple, PCR-based host-blood transcriptomic signature, RISK6, for multiple applications: identifying individuals at risk of incident disease, as a screening test for subclinical or clinical tuberculosis, and for monitoring tuberculosis treatment. RISK6 utility was validated by blind prediction using quantitative real-time (qRT) PCR in seven independent cohorts. Prognostic performance significantly exceeded that of previous signatures discovered in the same cohort. Performance for diagnosing subclinical and clinical disease in HIV-uninfected and HIV-infected persons, assessed by area under the receiver-operating characteristic curve, exceeded 85%. As a screening test for tuberculosis, the sensitivity at 90% specificity met or approached the benchmarks set out in World Health Organization target product profiles for non-sputum-based tests. RISK6 scores correlated with lung immunopathology activity, measured by positron emission tomography, and tracked treatment response, demonstrating utility as treatment response biomarker, while predicting treatment failure prior to treatment initiation. Performance of the test in capillary blood samples collected by finger-prick was noninferior to venous blood collected in PAXgene tubes. These results support incorporation of RISK6 into rapid, capillary blood-based point-of-care PCR devices for prospective assessment in field studies