1,000 research outputs found

    Stability of the viscously spreading ring

    Get PDF
    We study analytically and numerically the stability of the pressure-less, viscously spreading accretion ring. We show that the ring is unstable to small non-axisymmetric perturbations. To perform the perturbation analysis of the ring we use a stretching transformation of the time coordinate. We find that to 1st order, one-armed spiral structures, and to 2nd order additionally two-armed spiral features may appear. Furthermore, we identify a dispersion relation determining the instability of the ring. The theoretical results are confirmed in several simulations, using two different numerical methods. These computations prove independently the existence of a secular spiral instability driven by viscosity, which evolves into persisting leading and trailing spiral waves. Our results settle the question whether the spiral structures found in earlier simulations of the spreading ring are numerical artifacts or genuine instabilities.Comment: 13 pages, 12 figures; A&A accepte

    Vertical shear instability in accretion disc models with radiation transport

    Full text link
    The origin of turbulence in accretion discs is still not fully understood. While the magneto-rotational instability is considered to operate in sufficiently ionized discs, its role in the poorly ionized protoplanetary disc is questionable. Recently, the vertical shear instability (VSI) has been suggested as a possible alternative. Our goal is to study the characteristics of this instability and the efficiency of angular momentum transport, in extended discs, under the influence of radiative transport and irradiation from the central star. We use multi-dimensional hydrodynamic simulations to model a larger section of an accretion disc. First we study inviscid and weakly viscous discs using a fixed radial temperature profile in two and three spatial dimensions. The simulations are then extended to include radiative transport and irradiation from the central star. In agreement with previous studies we find for the isothermal disc a sustained unstable state with a weak positive angular momentum transport of the order of α≈10−4\alpha \approx 10^{-4}. Under the inclusion of radiative transport the disc cools off and the turbulence terminates. For discs irradiated from the central star we find again a persistent instability with a similar α\alpha value as for the isothermal case. We find that the VSI can indeed generate sustained turbulence in discs albeit at a relatively low level with α\alpha about few times 10−410^{-4}Comment: 12 pages, 24 figures, accepted for publication in Astronomy & Astrophysic

    On the evolution of eccentric and inclined protoplanets embedded in protoplanetary disks

    Full text link
    Young planets embedded in their protoplanetary disk interact gravitationally with it leading to energy and angular momentum exchange. This interaction determines the evolution of the planet through changes to the orbital parameters. We investigate changes in the orbital elements of a 20 Earth--mass planet due to the torques from the disk. We focus on the non-linear evolution of initially non-vanishing eccentricity ee and/or inclination ii. We treat the disk as a two- or three-dimensional viscous fluid and perform hydrodynamical simulations with an embedded planet. We find rapid exponential decay of the planet orbital eccentricity and inclination for small initial values of ee and ii, in agreement with linear theory. For larger values of e>0.1e > 0.1 the decay time increases and the decay rate scales as e˙∝e−2\dot{e} \propto e^{-2}, consistent with existing theoretical models. For large inclinations (ii > 6 deg) the inclination decay rate shows an identical scaling di/dt∝i−2di/dt \propto i^{-2}. We find an interesting dependence of the migration on the eccentricity. In a disk with aspect ratio H/r=0.05H/r=0.05 the migration rate is enhanced for small non-zero eccentricities (e<0.1e < 0.1), while for larger values we see a significant reduction by a factor of ∌4\sim 4. We find no indication for a reversal of the migration for large ee, although the torque experienced by the planet becomes positive when e≃0.3e \simeq 0.3. This inward migration is caused by the persisting energy loss of the planet. For non gap forming planets, eccentricity and inclination damping occurs on a time scale that is very much shorter than the migration time scale. The results of non linear hydrodynamic simulations are in very good agreement with linear theory for small ee and ii.Comment: accepted for Astronomy & Astrophysics, 16 pages, 16 figures, animations under: http://www.tat.physik.uni-tuebingen.de/~kley/publ/paper/eccp.htm

    Circumbinary disk evolution

    Get PDF
    We study the evolution of circumbinary disks surrounding classical T Tau stars. High resolution numerical simulations are employed to model a system consisting of a central eccentric binary star within an accretion disk. The disk is assumed to be infinitesimally thin, however a detailed energy balance including viscous heating and radiative cooling is applied. A novel numerical approach using a parallelized Dual-Grid technique on two different coordinate systems has been implemented. Physical parameters of the setup are chosen to model the close systems of DQ Tau and AK Sco, as well as the wider systems of GG Tau and UY Aur. Our main findings are for the tight binaries a substantial flow of material through the disk gap which is accreted onto the central stars in a phase dependent process. We are able to constrain the parameters of the systems by matching both accretion rates and derived spectral energy distributions to observational data where available

    Demonstration of 3-port grating phase relations

    Full text link
    We experimentally demonstrate the phase relations of 3-port gratings by investigating 3-port coupled Fabry-Perot cavities. Two different gratings which have the same 1st order diffraction efficiency but differ substantially in their 2nd order diffraction efficiency have been designed and manufactured. Using the gratings as couplers to Fabry-Perot cavities we could validate the results of an earlier theoretical description of the phases at a three port grating

    Tidal Barrier and the Asymptotic Mass of Proto Gas-Giant Planets

    Full text link
    Extrasolar planets found with radial velocity surveys have masses ranging from several Earth to several Jupiter masses. While mass accretion onto protoplanetary cores in weak-line T-Tauri disks may eventually be quenched by a global depletion of gas, such a mechanism is unlikely to have stalled the growth of some known planetary systems which contain relatively low-mass and close-in planets along with more massive and longer period companions. Here, we suggest a potential solution for this conundrum. In general, supersonic infall of surrounding gas onto a protoplanet is only possible interior to both of its Bondi and Roche radii. At a critical mass, a protoplanet's Bondi and Roche radii are equal to the disk thickness. Above this mass, the protoplanets' tidal perturbation induces the formation of a gap. Although the disk gas may continue to diffuse into the gap, the azimuthal flux across the protoplanets' Roche lobe is quenched. Using two different schemes, we present the results of numerical simulations and analysis to show that the accretion rate increases rapidly with the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk thickness. In regions with low geometric aspect ratios, gas accretion is quenched with relatively low protoplanetary masses. This effect is important for determining the gas-giant planets' mass function, the distribution of their masses within multiple planet systems around solar type stars, and for suppressing the emergence of gas-giants around low mass stars

    On disc driven inward migration of resonantly coupled planets with application to the system around GJ876

    Get PDF
    We consider two protoplanets gravitationally interacting with each other and a protoplanetary disc. The two planets orbit interior to a tidally maintained disc cavity while the disc interaction indices inward migration. When the migration is slow enough, the more rapidly migrating outer protoplanet approaches and becomes locked in a 2:1 commensurability with the inner one. This is maintained in subsequent evolution. We study this evolution using a simple anaytic model, full hydrodynamic 2D simulations of the disc planet system and longer time N body integrations incorporating simple prescriptions for the effect of the disc on the planet orbits. The eccentricity of the protoplanets are found to be determined by the migration rate induced in the outer planet orbit by the external disc. We apply our results to the recently discovered resonant planets around GJ876. Simulation shows that a disc with parameters expected for protoplanetary discs causes trapping in the 2:1 commensurability when the planets orbit in an inner cavity and that eccentricities in the observed range may be obtained.Comment: 8 pages, 5 figures, submitted to A&A on 30/03/200

    On the observability of bow shocks of Galactic runaway OB stars

    Full text link
    Massive stars that have been ejected from their parent cluster and supersonically sailing away through the interstellar medium (ISM) are classified as exiled. They generate circumstellar bow shock nebulae that can be observed. We present two-dimensional, axisymmetric hydrodynamical simulations of a representative sample of stellar wind bow shocks from Galactic OB stars in an ambient medium of densities ranging from n_ISM=0.01 up to 10.0/cm3. Independently of their location in the Galaxy, we confirm that the infrared is the most appropriated waveband to search for bow shocks from massive stars. Their spectral energy distribution is the convenient tool to analyze them since their emission does not depend on the temporary effects which could affect unstable, thin-shelled bow shocks. Our numerical models of Galactic bow shocks generated by high-mass (~40 Mo) runaway stars yield Hα\alpha fluxes which could be observed by facilities such as the SuperCOSMOS H-Alpha Survey. The brightest bow shock nebulae are produced in the denser regions of the ISM. We predict that bow shocks in the field observed at Ha by means of Rayleigh-sensitive facilities are formed around stars of initial mass larger than about 20 Mo. Our models of bow shocks from OB stars have the emission maximum in the wavelength range 3 <= lambda <= 50 micrometer which can be up to several orders of magnitude brighter than the runaway stars themselves, particularly for stars of initial mass larger than 20 Mo.Comment: 13 pages, 12 figures. Accepted to MNRAS (2016
    • 

    corecore