554 research outputs found

    Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation

    Get PDF
    none9Tuber magnatum, an ascomycetous fungus and obligate ectomycorrhizal symbiont, forms hypogeous fruit bodies, commonly called Italian white truffles. The diversity of bacterial communities associated with T. magnatum truffles was investigated using culture-independent and -dependent 16S rRNA genebased approaches. Eighteen truffles were classified in three groups, representing different degrees of ascocarp maturation, based on the percentage of asci containing mature spores. The culturable bacterial fraction was 4.17 (+/- 1.61) x 10.000.000, 2.60 (+/- 1.22) x 10.000.000 and 1.86 (+/-1.32) x 1.000.000 cfu g-1 for immature, intermediate and mature ascocarps respectively. The total of bacteria count was two orders of magnitude higher than the cfu g-1 count. Sequencing results from the clone library showed a significant presence of alpha-Proteobacteria (634 of the 771 total clones screened, c. 82%) affiliated with Sinorhizobium, Rhizobium and Bradyrhizobium spp. The bacterial culturable fraction was generally represented by gamma-Proteobacteria (210 of the 384 total strains isolated, c. 55%), which were mostly fluorescent pseudomonads. Fluorescent in situ hybridization confirmed that alpha-Proteobacteria (85.8%) were the predominant components of truffle bacterial communities with beta-Proteobacteria (1.5%), gamma-Proteobacteria (1.9%), Bacteroidetes (2.1%), Firmicutes (2.4%) and Actinobacteria (3%) only poorly represented. Molecular approaches made it possible to identify alpha-Proteobacteria as major constituents of a bacterial component associated with T. magnatum ascoma, independently from the degree of maturation.openE. BARBIERI; C. GUIDI; J. BERTAUX; P. FREY-KLETT; J. GARBAYE; P. CECCAROLI; R. SALTARELLI; A. ZAMBONELLI; V. STOCCHIBarbieri, Elena; C., Guidi; J., Bertaux; P., FREY KLETT; J., Garbaye; Ceccaroli, Paola; Saltarelli, Roberta; A., Zambonelli; Stocchi, Vilbert

    J., C., G., C. , I., S. Kopp

    Get PDF
    Freigang F, Klett S, Kopp S. Pragmatic multimodality: Effects of nonverbal cues of focus and certainty in a virtual human. In: Beskow J, Peters C, Castellano G, O'Sullivan C, Leite I, Kopp S, eds. The Seventeenth International Conference on Intelligent Virtual Agents (IVA 2017). Lecture Notes in Computer Science. Vol 10498. Springer International Publishing; 2017: 142-155

    Beings in their own right? Exploring Children and young people's sibling and twin relationships in the Minority World

    Get PDF
    This paper examines the contributions that the sociological study of sibship and twinship in the Minority World can make to childhood studies. It argues that, in providing one forum within which to explore children and young people's social relationships, we can add to our understanding of children and young people's interdependence and develop a more nuanced understanding of agency. As emergent subjects, children, young people and adults are in a process of ‘becoming’. However, this does not mean that they can ‘become’ anything they choose to. The notion of negotiated interdependence (Punch 2002) is useful in helping us to grasp the contingent nature of children and young people's agency

    In situ, real-time visualization of electrochemistry using magnetic resonance imaging

    Get PDF
    The drive to develop better electrochemical energy storage devices requires the development of not only new materials, but also better understanding of the underpinning chemical and dynamical processes within such devices during operation, for which new analytical techniques are required. Currently, there are few techniques that can probe local composition and transport in the electrolyte during battery operation. In this paper, we report a novel application of magnetic resonance imaging (MRI) for probing electrochemical processes in a model electrochemical cell. Using MRI, the transport and zinc and oxygen electrochemistry in an alkaline electrolyte, typical of that found in zinc-air batteries, are investigated. Magnetic resonance relaxation maps of the electrolyte are used to visualize the chemical composition and electrochemical processes occurring during discharge in this model metal-air battery. Such experiments will be useful in the development of new energy storage/conversion devices, as well as other electrochemical technologies

    Comparative assessment of gasification based coal power plants with various CO2 capture technologies producing electricity and hydrogen

    Get PDF
    Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool “Aspen Plus”. The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency

    International standardisation work on the measurement of radon in air and water

    Get PDF
    Radon is considered to be the main source of human exposure to natural radiation. As stated by the World Health Organization, the exposure due to the inhalation of indoor radon is much greater than the one via the ingestion of water as radon degasses from water during handling. In response to these concerns about the universal presence of radon, environmental assessment studies are regularly commissioned to assess the radon exposure of public and workers. The credibility of such studies relies on the quality and reliability of radon analysis as well as on the sample representativeness of the radiological situation. The standard-setting approach, based on consensus, seemed to lend itself to a settlement of technical aspects of potential comparison. At present, two Working Groups of the International Standardization Organization are focussing on drafting standards on radon and its decay products measurement in air and water. These standards, which aim for a set of rigorous metrology practices, will be useful for persons in charge of the initial characterisation of a site with respect to natural radioactivity as well as to those performing the routine surveillance of specific site
    • 

    corecore