23 research outputs found

    The Optical Instrumentation of the ATLAS Tile Calorimeter

    Get PDF
    The purpose of this Note is to describe the optical assembly procedure called here Optical Instrumentation and the quality tests conducted on the assembled units. Altogether, 65 Barrel (or LB) modules were constructed - including one spare - together with 129 Extended Barrel (EB) modules (including one spare). The LB modules were mechanically assembled at JINR (Dubna, Russia) and transported to CERN, where the optical instrumentation was performed with personnel contributed by several Institutes. The modules composing one of the two Extended Barrels (known as EBA) were mechanically assembled in the USA, and instrumented in two US locations (ANL, U. of Michigan), while the modules of the other Extended barrel (EBC) were assembled in Spain and instrumented at IFAE (Barcelona). Each of the EB modules includes a subassembly known as ITC that contributes to the hermeticity of the calorimeter; all ITCs were assembled at UTA (Texas), and mounted onto the module mechanical structures at the EB mechanical assembly locations.The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of ±1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper

    Design, Construction and Installation of the ATLAS Hadronic Barrel Scintillator-Tile Calorimeter

    Get PDF
    The scintillator tile hadronic calorimeter is a sampling calorimeter using steel as the absorber structure and scintillator as the active medium. The scintillator is located in "pockets" in the steel structure and the wavelength-shifting fibers are contained in channels running radially within the absorber to photomultiplier tubes which are located in the outer support girders of the calorimeter structure. In addition, to its role as a detector for high energy particles, the tile calorimeter provides the direct support of the liquid argon electromagnetic calorimeter in the barrel region, and the liquid argon electromagnetic and hadronic calorimeters in the endcap region. Through these, it indirectly supports the inner tracking system and beam pipe. The steel absorber, and in particular the support girders, provide the flux return for the solenoidal field from the central solenoid. Finally, the end surfaces of the barrel calorimeter are used to mount services, power supplies and readout crates for the inner tracking systems and the liquid argon barrel electromagnetic calorimeter

    The Production and Qualification of Scintillator Tiles for the ATLAS Hadronic Calorimeter

    Get PDF
    The production of the scintillator tiles for the ATLAS Tile Calorimeter is presented. In addition to the manufacture and production, the properties of the tiles will be presented including light yield, uniformity and stability

    Mechanical construction and installation of the ATLAS tile calorimeter

    Get PDF
    This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities +/- 1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    An Optical Link Interface for the Tile Calorimeter in ATLAS

    No full text
    Abstract An optical link interface has been developed in Stockholm for the Atlas Tile-Calorimeter. The link serves as a readout for one entire TileCal drawer, i.e. with up to 48 front-end channels. It also contains a receiver for the distribution of TTC clocks and messages to the full digitizer system. Digitized data is serialized in the digitizer boards and supplied with headers and CRC control fields. Data with this protocol is then sent via G-link to an S-link destination card where it is unpacked and parallelised with a specially developed Altera code. The entire read-out part of the interface has been duplicated for redundancy with two dedicated output fibers. The TTC distribution has also been made redundant by using two receivers (and two input fibers), both capable of distributing the TTC signal. To decrease the sensitivity to radiation, the complexity of the interface has been kept at a minimum. This is also beneficial to the system cost. To facilitate the mechanical installation, the interface has been given an Lshape so that it can be mounted closely on top of one of the digitizer boards without interfering with its components
    corecore