73 research outputs found

    A review of the benefits and drawbacks to virtual field guides in today’s Geoscience higher education environment

    Get PDF
    Virtual Field Guides are a way for educators to tackle the growing issue of funding pressures in areas of higher education, such as geography. Virtual Field Guides are however underutilised and can offer students a different way of learning. Virtual Field Guides have many benefits to students, such as being more inclusive, building student skills and confidence in a controlled environment pre fieldtrip and can increase engagement in the topic studied. There are also benefits to the educator, such as reduced cost, more efficient students on fieldwork tasks and the ability to tailor and update their field guides to suit their needs. However there are drawbacks in the challenge of creation and their outcome as educational standalone tools. This paper reviews the literature around the benefits and draw backs to the creation and incorporation of virtual field guides in geoscience education. © 2017, The Author(s)

    Dry and Humid Periods Reconstructed from Tree Rings in the Former Territory of Sogdiana (Central Asia) and Their Socio-economic Consequences over the Last Millennium

    Get PDF
    One of the richest societies along the Silk Road developed in Sogdiana, located in present-day Tajikistan, Uzbekistan, and Kyrgyzstan. This urban civilisation reached its greatest prosperity during the golden age of the Silk Road (sixth to ninth century ce). Rapid political and economic changes, accelerated by climatic variations, were observed during last millennium in this region. The newly developed tree-ring-based reconstruction of precipitation for the pastmillennium revealed a series of dry and wet stages. During the Medieval Climate Anomaly (MCA), two dry periods occurred (900–1000 and 1200–1250), interrupted by a phase of wetter conditions. Distinct dry periods occurred around 1510–1650, 1750–1850, and 1920–1970, respectively. The juniper tree-ring record of moisture changes revealed that major dry and pluvial episodes were consistent with those indicated by hydroclimatic proxy data from adjacent areas. These climate fluctuations have had longand short term consequences for human history in the territory of former Sogdiana

    Understanding Novel Superconductors with Ab Initio Calculations

    Full text link
    This chapter gives an overview of the progress in the field of computational superconductivity. Following the MgB2 discovery (2001), there has been an impressive acceleration in the development of methods based on Density Functional Theory to compute the critical temperature and other physical properties of actual superconductors from first-principles. State-of-the-art ab-initio methods have reached predictive accuracy for conventional (phonon-mediated) superconductors, and substantial progress is being made also for unconventional superconductors. The aim of this chapter is to give an overview of the existing computational methods for superconductivity, and present selected examples of material discoveries that exemplify the main advancements.Comment: 38 pages, 10 figures, Contribution to Springer Handbook of Materials Modellin

    Progress and Research Needs of Plant Biomass Degradation by Basidiomycete Fungi

    Get PDF
    Peer reviewe

    Specific heat of 2D interacting Majorana fermions from holography

    Get PDF
    Majorana fermions are a fascinating medium for discovering new phases of matter. However, the standard analytical tools are very limited in probing the non-perturbative aspects of interacting Majoranas in more than one dimensions. Here, we employ the holographic correspondence to determine the specific heat of a two-dimensional interacting gapless Majorana system. To perform our analysis we first describe the interactions in terms of a pseudo-scalar torsion field. We then allow fluctuations in the background curvature thus identifying our model with a (2 + 1)-dimensional Anti-de Sitter (AdS) geometry with torsion. By employing the AdS/CFT correspondence, we show that the interacting model is dual to a (1 + 1)-dimensional conformal field theory (CFT) with central charge that depends on the interaction coupling. This non-perturbative result enables us to determine the effect interactions have in the specific heat of the system at the zero temperature limit
    • …
    corecore