41 research outputs found

    Chemical characterisation of benzene oxidation products under high- and low-NOx conditions using chemical ionisation mass spectrometry

    Get PDF
    Aromatic hydrocarbons are a class of volatile organic compounds associated with anthropogenic activity and make up a significant fraction of urban volatile organic compound (VOC) emissions that contribute to the formation of secondary organic aerosol (SOA). Benzene is one of the most abundant species emitted from vehicles, biomass burning and industry. An iodide time-of-flight chemical ionisation mass spectrometer (ToF-CIMS) and nitrate ToF-CIMS were deployed at the Julich Plant Atmosphere Chamber as part of a series of experiments examining benzene oxidation by OH under high- and low-NOx conditions, where a range of organic oxidation products were detected. The nitrate scheme detects many oxidation products with high masses, ranging from intermediate volatile organic compounds (IVOCs) to extremely low volatile organic compounds (ELVOCs), including C-12 dimers. In comparison, very few species with C->= 6 and O-> 8 were detected with the iodide scheme, which detected many more IVOCs and semi-volatile organic compounds (SVOCs) but very few ELVOCs and low volatile organic compounds (LVOCs). A total of 132 and 195 CHOPeer reviewe

    Secondary organic aerosol reduced by mixture of atmospheric vapours

    Get PDF
    Secondary organic aerosol contributes to the atmospheric particle burden with implications for air quality and climate. Biogenic volatile organic compounds such as terpenoids emitted from plants are important secondary organic aerosol precursors with isoprene dominating the emissions of biogenic volatile organic compounds globally. However, the particle mass from isoprene oxidation is generally modest compared to that of other terpenoids. Here we show that isoprene, carbon monoxide and methane can each suppress the instantaneous mass and the overall mass yield derived from monoterpenes in mixtures of atmospheric vapours. We find that isoprene 'scavenges' hydroxyl radicals, preventing their reaction with monoterpenes, and the resulting isoprene peroxy radicals scavenge highly oxygenated monoterpene products. These effects reduce the yield of low-volatility products that would otherwise form secondary organic aerosol. Global model calculations indicate that oxidant and product scavenging can operate effectively in the real atmosphere. Thus highly reactive compounds (such as isoprene) that produce a modest amount of aerosol are not necessarily net producers of secondary organic particle mass and their oxidation in mixtures of atmospheric vapours can suppress both particle number and mass of secondary organic aerosol. We suggest that formation mechanisms of secondary organic aerosol in the atmosphere need to be considered more realistically, accounting for mechanistic interactions between the products of oxidizing precursor molecules (as is recognized to be necessary when modelling ozone production).Peer reviewe

    Whole plant 13CO2-labelling for carotenoid turnover analysis in leaves

    No full text
    Understanding the regulation of carotenoid metabolism (synthesis, conversion and degradation) in plants requires turnover measurement of individual carotenoids, apocarotenoids and precursors. In our previous study, we demonstrated continuous turnover of carotenes together with chlorophyll a in illuminated leaves of Arabidopsis thaliana by using 14CO2 pulse-chase labeling. In contrast to carotenes and chlorophyll a that are bound in photosystem reaction center complexes, xanthophylls and chlorophyll b, which are bound in light-harvesting antenna complexes, were hardly labeled by 14C within a day, even when the total amount of xanthophyll-cycle pigments (zeaxanthin, antheraxanthin, and violaxanthin) was increasing, presumably by de novo synthesis, under strong light. In order to obtain quantitative information of carotenoid turnover in leaves of intact plants, we constructed a labelling chamber in which 15 small plants, such as Arabidopsis, can be synchronously labelled by 13CO2 over days. First we tested the chamber by operating with 12CO2 while continuously monitoring the conditions inside the chamber (light intensity, air temperature and humidity, CO2 concentration, pressure). Then a protocol was established to grow 15 Arabidopsis plants (wildtype Columbia-0) in the chamber under the light intensity of ~200 µmol photons m-2 s-1. Switching to 13CO2, plants were grown in the chamber under the same conditions for up to seven days. LC-MS analysis of pigments extracted from rosette leaves of the 13C-labelled Arabidopsis plants showed a substantial incorporation of photosynthetically fixed 13C into β-carotene and lutein along with chlorophyll a and chlorophyll b. The proposed system can be used for pulse-chase experiments (from 12CO2 to 13CO2 and vice versa) to estimate the turnover rate of carotenoids and chlorophylls as well as other plant metabolites. Results from such experiments could provide missing pieces of information in the current picture of metabolic pathway regulation in plants
    corecore