52 research outputs found

    Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Indoor-based anti-vector interventions remain the preferred means of reducing risk of malaria transmission in malaria endemic areas around the world. Despite demonstrated success in reducing human-mosquito interactions, these methods are effective solely against endophilic vectors. It may be that outdoor locations serve as an important venue of host seeking by <it>Anopheles gambiae </it>sensu lato (s.l.) mosquitoes where indoor vector suppression measures are employed. This paper describes the host seeking activity of anopheline mosquito vectors in the Punta Europa region of Bioko Island, Equatorial Guinea. In this area, <it>An. gambiae </it>sensu stricto (s.s.) is the primary malaria vector. The goal of the paper is to evaluate the importance of <it>An gambiae </it>s.l. outdoor host seeking behaviour and discuss its implications for anti-vector interventions.</p> <p>Methods</p> <p>The venue and temporal characteristics of host seeking by anopheline vectors in a hyperendemic setting was evaluated using human landing collections conducted inside and outside homes in three villages during both the wet and dry seasons in 2007 and 2008. Additionally, five bi-monthly human landing collections were conducted throughout 2009. Collections were segregated hourly to provide a time distribution of host-seeking behaviour.</p> <p>Results</p> <p>Surprisingly high levels of outdoor biting by <it>An. gambiae </it>senso stricto and <it>An. melas </it>vectors were observed throughout the night, including during the early evening and morning hours when human hosts are often outdoors. As reported previously, <it>An. gambiae </it>s.s. is the primary malaria vector in the Punta Europa region, where it seeks hosts outdoors at least as much as it does indoors. Further, approximately 40% of <it>An. gambiae </it>s.l. are feeding at times when people are often outdoors, where they are not protected by IRS or LLINs. Repeated sampling over two consecutive dry-wet season cycles indicates that this result is independent of seasonality.</p> <p>Conclusions</p> <p><it>An. gambiae </it>s.l. mosquitoes currently seek hosts in outdoor venues as much as indoors in the Punta Europa region of Bioko Island. This contrasts with an earlier pre-intervention observation of exclusive endophagy of <it>An. gambiae </it>in this region. In light of this finding, it is proposed that the long term indoor application of insecticides may have resulted in an adaptive shift toward outdoor host seeking in <it>An. gambiae </it>s.s. on Bioko Island.</p

    Gene Expression Changes in GABAA Receptors and Cognition Following Chronic Ketamine Administration in Mice

    Get PDF
    Ketamine is a well-known anesthetic agent and a drug of abuse. Despite its widespread use and abuse, little is known about its long-term effects on the central nervous system. The present study was designed to evaluate the effect of long-term (1- and 3-month) ketamine administration on learning and memory and associated gene expression levels in the brain. The Morris water maze was used to assess spatial memory and gene expression changes were assayed using Affymetrix Genechips; a focus on the expression of GABAA receptors that mediate a tonic inhibition in the brain, was confirmed by quantitative real-time PCR and western blot. Compared with saline controls, there was a decline in learning and memory performance in the ketamine-treated mice. Genechip results showed that 110 genes were up-regulated and 136 genes were down-regulated. An ontology analysis revealed the most significant effects of ketamine were on GABAA receptors. In particular, there was a significant up-regulation of both mRNA and protein levels of the alpha 5 subunit (Gabra5) of the GABAA receptors in the prefrontal cortex. In conclusion, chronic exposure to ketamine impairs working memory in mice, which may be explained at least partly by up-regulation of Gabra5 subunits in the prefrontal cortex

    Skp is a multivalent chaperone of outer membrane proteins

    Get PDF
    The trimeric chaperone Skp sequesters outer-membrane proteins (OMPs) within a hydrophobic cage, thereby preventing their aggregation during transport across the periplasm in Gram-negative bacteria. Here, we studied the interaction between Escherichia coli Skp and five OMPs of varying size. Investigations of the kinetics of OMP folding revealed that higher Skp/OMP ratios are required to prevent the folding of 16-stranded OMPs compared with their 8-stranded counterparts. Ion mobility spectrometry–mass spectrometry (IMS–MS) data, computer modeling and molecular dynamics simulations provided evidence that 10- to 16-stranded OMPs are encapsulated within an expanded Skp substrate cage. For OMPs that cannot be fully accommodated in the expanded cavity, sequestration is achieved by binding of an additional Skp trimer. The results suggest a new mechanism for Skp chaperone activity involving the coordination of multiple copies of Skp in protecting a single substrate from aggregation

    Glial Tumor Necrosis Factor Alpha (TNFα) Generates Metaplastic Inhibition of Spinal Learning

    Get PDF
    Injury-induced overexpression of tumor necrosis factor alpha (TNFα) in the spinal cord can induce chronic neuroinflammation and excitotoxicity that ultimately undermines functional recovery. Here we investigate how TNFα might also act to upset spinal function by modulating spinal plasticity. Using a model of instrumental learning in the injured spinal cord, we have previously shown that peripheral intermittent stimulation can produce a plastic change in spinal plasticity (metaplasticity), resulting in the prolonged inhibition of spinal learning. We hypothesized that spinal metaplasticity may be mediated by TNFα. We found that intermittent stimulation increased protein levels in the spinal cord. Using intrathecal pharmacological manipulations, we showed TNFα to be both necessary and sufficient for the long-term inhibition of a spinal instrumental learning task. These effects were found to be dependent on glial production of TNFα and involved downstream alterations in calcium-permeable AMPA receptors. These findings suggest a crucial role for glial TNFα in undermining spinal learning, and demonstrate the therapeutic potential of inhibiting TNFα activity to rescue and restore adaptive spinal plasticity to the injured spinal cord. TNFα modulation represents a novel therapeutic target for improving rehabilitation after spinal cord injury

    FAK activity sustains intrinsic and acquired ovarian cancer resistance to platinum chemotherapy

    Get PDF
    Gene copy number alterations, tumor cell stemness, and the development of platinum chemotherapy resistance contribute to high-grade serous ovarian cancer (HGSOC) recurrence. Stem phenotypes involving Wnt-beta-catenin, aldehyde dehydrogenase activities, intrinsic platinum resistance, and tumorsphere formation are here associated with spontaneous gains in Kras, Myc and FAK (KMF) genes in a new aggressive murine model of ovarian cancer. Adhesion-independent FAK signaling sustained KMF and human tumorsphere proliferation as well as resistance to cisplatin cytotoxicity. Platinum-resistant tumorspheres can acquire a dependence on FAK for growth. Accordingly, increased FAK tyrosine phosphorylation was observed within HGSOC patient tumors surviving neo-adjuvant chemotherapy. Combining a FAK inhibitor with platinum overcame chemoresistance and triggered cell apoptosis. FAK transcriptomic analyses across knockout and reconstituted cells identified 135 targets, elevated in HGSOC, that were regulated by FAK activity and beta-catenin including Myc, pluripotency and DNA repair genes. These studies reveal an oncogenic FAK signaling role supporting chemoresistance

    Alloplastische Implantate in der Kopf- und Halschirurgie.

    Get PDF

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Multicentre studies of insecticide-treated durable wall lining in Africa and South-East Asia: entomological efficacy and household acceptability during one year of field use.

    Get PDF
    BACKGROUND: Indoor residual spraying (IRS) is a primary method of malaria vector control, but its potential impact is constrained by several inherent limitations: spraying must be repeated when insecticide residues decay, householders can tire of the annual imposition and campaign costs are recurrent. Durable lining (DL) can be considered an advanced form of long-lasting IRS where insecticide is gradually released from an aesthetically attractive wall lining material to provide vector control for several years. A multicentre trial was carried out in Equatorial Guinea, Ghana, Mali, South Africa and Vietnam to assess the feasibility, durability, bioefficacy and household acceptability of DL, compared to conventional IRS or insecticide-treated curtains (LLITCs), in a variety of operational settings. METHODS: This study was conducted in 220 households in traditional rural villages over 12-15 months. In all sites, rolls of DL were cut to fit house dimensions and fixed to interior wall surfaces (usually with nails and caps) by trained teams. Acceptability was assessed using a standardized questionnaire covering such topics as installation, exposure reactions, entomology, indoor environment, aesthetics and durability. Bioefficacy of interventions was evaluated using WHO cone bioassay tests at regular intervals throughout the year. RESULTS: The deltamethrin DL demonstrated little to no decline in bioefficacy over 12-15 months, supported by minimal loss of insecticide content. By contrast, IRS displayed a significant decrease in bioactivity by 6 months and full loss after 12 months. The majority of participants in DL households perceived reductions in mosquito density (93%) and biting (82%), but no changes in indoor temperature (83%). Among those households that wanted to retain the DL, 73% cited protective reasons, 20% expressed a desire to keep theirs for decoration and 7% valued both qualities equally. In Equatorial Guinea, when offered a choice of vector control product at the end of the trial (DL, IRS or LLITCs), DL consistently emerged as the most popular intervention regardless of the earlier household allocation. CONCLUSIONS: Just as long-lasting insecticidal nets overcame several of the technical and logistical constraints associated with conventionally treated nets and then went to scale, this study demonstrates the potential of DL to sustain user compliance and overcome the operational challenges associated with IRS
    • 

    corecore