718 research outputs found

    Neutrino-nucleus interaction rates at a low-energy beta-beam facility

    Full text link
    We compute the neutrino detection rates to be expected at a low-energy beta-beam facility. We consider various nuclei as neutrino detectors and compare the case of a small versus large storage ring.Comment: 6 pages, 3 figure

    A Model for Neutrino Warm Dark Matter and Neutrino Oscillations

    Get PDF
    The muon- and tau-neutrinos with the mass in the keV range, which are allowed in a low reheating temperature cosmology, can compose the warm dark matter of the universe. A model of four light neutrinos including the keV scale ΜΌ\nu_\mu and Μτ\nu_\tau is studied, which combines the seesaw mechanism and the Abelian flavor symmetry. The atmospheric neutrino anomaly is due to the ΜΌ−Μτ\nu_\mu-\nu_\tau oscillation. The solar neutrino problem is answered by the oscillation into the light sterile neutrino, where the SMA, LMA, and LOW-QVO solutions can be accommodated in our scenario.Comment: 11 pages, Final version to appear in PLB, References adde

    Das SĂŒdexperiment des Pierre-Auger-Projekts

    Get PDF

    Improved limits on nuebar emission from mu+ decay

    Full text link
    We investigated mu+ decays at rest produced at the ISIS beam stop target. Lepton flavor (LF) conservation has been tested by searching for \nueb via the detection reaction p(\nueb,e+)n. No \nueb signal from LF violating mu+ decays was identified. We extract upper limits of the branching ratio for the LF violating decay mu+ -> e+ \nueb \nu compared to the Standard Model (SM) mu+ -> e+ nue numub decay: BR < 0.9(1.7)x10^{-3} (90%CL) depending on the spectral distribution of \nueb characterized by the Michel parameter rho=0.75 (0.0). These results improve earlier limits by one order of magnitude and restrict extensions of the SM in which \nueb emission from mu+ decay is allowed with considerable strength. The decay \mupdeb as source for the \nueb signal observed in the LSND experiment can be excluded.Comment: 10 pages, including 1 figure, 1 tabl

    Telling three from four neutrinos at the Neutrino Factory

    Get PDF
    We upgrade the study of the physical reach of a Neutrino Factory considering the possibility to distinguish a three (active) neutrino oscillation scenario from the scenario in which a light sterile neutrino is also present. The distinction is easily performed in the so--called 2+2 scheme, but also in the more problematic 3+1 scheme it can be attained in some regions of the parameter space. We also discuss the CP violating phase determination, showing that the effects of a large phase in the three--neutrino theory cannot be reproduced in a four--neutrino, CP conserving, model.Comment: 21 Latex2e pages, 9 figures using epsfig; minor changes and a footnote added, to be published on Nucl. Phys.

    Shell-model calculations of neutrino scattering from 12C

    Get PDF
    Neutrino reaction cross-sections, (ΜΌ,Ό−)(\nu_\mu,\mu^-), (Îœe,e−)(\nu_e,e^-), ÎŒ\mu-capture and photoabsorption rates on 12^{12}C are computed within a large-basis shell-model framework, which included excitations up to 4ℏω4\hbar\omega. When ground-state correlations are included with an open pp-shell the predictions of the calculations are in reasonable agreement with most of the experimental results for these reactions. Woods-Saxon radial wave functions are used, with their asymptotic forms matched to the experimental separation energies for bound states, and matched to a binding energy of 0.01 MeV for unbound states. For comparison purposes, some results are given for harmonic oscillator radial functions. Closest agreement between theory and experiment is achieved with unrestricted shell-model configurations and Woods-Saxon radial functions. We obtain for the neutrino-absorption inclusive cross sections: σˉ=13.8×10−40\bar{\sigma} = 13.8 \times 10^{-40} cm2^2 for the (ΜΌ,Ό−)(\nu_{\mu},\mu^{-}) decay-in-flight flux in agreement with the LSND datum of (12.4±1.8)×10−40(12.4 \pm 1.8) \times 10^{-40} cm2^2; and σˉ=12.5×10−42\bar{\sigma} = 12.5 \times 10^{-42} cm2^2 for the (Îœe,e−)(\nu_{e},e^{-}) decay-at-rest flux, less than the experimental result of (14.4±1.2)×10−42(14.4 \pm 1.2) \times 10^{-42} cm2^2.Comment: 19 pages. ReVTeX. No figure

    Muon-anti-neutrino <---> electron-anti-neutrino mixing: analysis of recent indications and implications for neutrino oscillation phenomenology

    Get PDF
    We reanalyze the recent data from the Liquid Scintillator Neutrino Detector (LSND) experiment, that might indicate anti-nu_muanti-nu_e mixing. This indication is not completely excluded by the negative results of established accelerator and reactor neutrino oscillation searches. We quantify the region of compatibility by means of a thorough statistical analysis of all the available data, assuming both two-flavor and three-flavor neutrino oscillations. The implications for various theoretical scenarios and for future oscillation searches are studied. The relaxation of the LSND constraints under different assumptions in the statistical analysis is also investigated.Comment: 17 pages (RevTeX) + 9 figures (Postscript) included with epsfig.st

    Neutrino suppression and extra dimensions: a minimal model

    Get PDF
    We study flavour neutrinos confined to our 4-dimensional world coupled to one "bulk" state, i.e. a Kaluza-Klein tower. We discuss the spatial development of the neutrino disappearance, the possibility of resurgence and the effective flavour transitions induced in this mechanism. We show that even a simple model can produce an energy-independent suppression at large distances, and relate this to experimental data.Comment: 14 pages, 8 figures; the exclusion of sterile neutrinos by SuperKamiokande is discussed; references adde

    The silver channel at the Neutrino Factory

    Full text link
    We notice that looking for Îœe→Μτ\nu_e \to \nu_\tau at the same time as Îœe→ΜΌ\nu_e \to \nu_\mu oscillations could significantly help to reduce the errors in the leptonic CP-violating phase ÎŽ\delta measurement. We show how the Îœe→ΜΌ\nu_e \to \nu_\mu (``golden'') and Îœe→Μτ\nu_e \to \nu_\tau (``silver'') transitions observed at an OPERA-like 2 Kton lead-emulsion detector at L = 732 Km, in combination with the Îœe→ΜΌ\nu_e \to \nu_\mu transitions observed at a 40 Kton magnetized iron detector with a baseline of L = 3000 Km, strongly reduce the so-called (Ξ13,ÎŽ)(\theta_{13}, \delta) ambiguity. We also show how a moderate increase in the OPERA-like detector mass (4 Kton instead of 2 Kton) completely eliminates the clone regions even for small values of Ξ13\theta_{13}.Comment: Latex2e, 36 pages, using epsfi

    Microscopic theories of neutrino-^{12}C reactions

    Get PDF
    In view of the recent experiments on neutrino oscillations performed by the LSND and KARMEN collaborations as well as of future experiments, we present new theoretical results of the flux averaged 12C(Îœe,e−)12N^{12}C(\nu_e,e^-)^{12}N and 12C(ΜΌ,Ό−)12N^{12}C(\nu_{\mu},{\mu}^-)^{12}N cross sections. The approaches used are charge-exchange RPA, charge-exchange RPA among quasi-particles (QRPA) and the Shell Model. With a large-scale shell model calculation the exclusive cross sections are in nice agreement with the experimental values for both reactions. The inclusive cross section for ΜΌ\nu_{\mu} coming from the decay-in-flight of π+\pi^+ is 15.2×10−40cm215.2 \times 10^{-40} cm^2 to be compared to the experimental value of 12.4±0.3±1.8×10−40cm212.4 \pm 0.3 \pm 1.8 \times 10^{-40} cm^2, while the one due to Îœe\nu_{e} coming from the decay-at-rest of ÎŒ+\mu^+ is 16.4×10−42cm216.4 \times 10^{-42} cm^2 which agrees within experimental error bars with the measured values. The shell model prediction for the decay-in-flight neutrino cross section is reduced compared to the RPA one. This is mainly due to the different kind of correlations taken into account in the calculation of the spin modes and partially due to the shell-model configuration basis which is not large enough, as we show using arguments based on sum-rules.Comment: 17 pages, latex, 5 figure
    • 

    corecore