30 research outputs found

    Diagnosis of hepatocellular adenoma in men before onset of diabetes in HNF1A-MODY:Watch out for winkers

    Get PDF
    Hepatocyte nuclear factor 1A (HNF1A) maturity-onset diabetes of the young (MODY) is a monogenetic, autosomal dominantly inherited form of diabetes. HNF1A-MODY is associated with HNF1A-inactivated hepatocellular adenoma (H-HCA) formation. Hepatocellular adenoma (HCA) are benign liver tumours and related complications are rare but serious: hepatic haemorrhage and malignant transformation. Guidelines recommend resection of all HCA in men and do not take any co-occurring metabolic disorders into account. We report a family with HCA preceding diabetes mellitus. Male index patient presented with numerous, irresectable HCA. After initial diagnostic and aetiologic uncertainty HNF1A germline mutation c.815G>A (p.Arg272His) was confirmed 8 years later. No HCA-related complications occurred. His diabetic mother was diagnosed with HCA after severe hepatic haemorrhage years before. HNF1A-MODY should be considered in (non-)diabetic (male) patients with H-HCA. We advocate liver biopsy and, if necessary, genetic analysis to precede any intervention for HCA in males and screening for HCA in HNF1A-MODY patients

    Detection of submicroscopic chromosomal abnormalities using microarray analysis:The value and pitfalls in prenatal and postnatal diagnosis

    Get PDF
    Chromosomal microarray enables identifying small genomic deletions and duplications that are not routinely seen on karyotyping. Microarray analysis therefore has emerged as a primary diagnostic tool for the evaluation of developmental delay and structural malformations in children in the Netherlands since 2008. When invasive prenatal diagnosis is indicated, because of ultrasound abnormalities and/or an increased risk for common aneuploidies (trisomy 21, 18 or 13) at first trimester screening, microarray analysis instead of conventional karyotyping will be applied when targeted molecular rapid aneuploidy detection reveals no abnormalities. Microarray analysis provides around 12-15% extra diagnosis in cases of mental retardation and/or structural abnormalities and it can provide 6% extra diagnosis in prenatal samples with a normal karyotype. Besides finding evident causative abnormalities, microarray analysis increases the detection rates of VOUS (variants of unknown significance) that, in particular during a pregnancy, induce emotional burden en counselling difficulties. Furthermore, CNVs that are pathogenic but not related with the phenotype (e.g. deletion of an oncogene) may complicate pretest and posttest counselling as well, since these findings may have health consequences for both patient and family members. Clinicians who request microarray analysis should be aware of these implications. In this paper, two prenatal and four postnatal case reports illustrate the ability to identify more clinically relevant abnormalities, but also limitations and coincidental findings in microarray analysis.</p

    TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila

    Get PDF
    Transportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities

    Widening of the genetic and clinical spectrum of Lamb-Shaffer syndrome, a neurodevelopmental disorder due to SOX5 haploinsufficiency

    Get PDF
    Purpose Lamb-Shaffer syndrome (LAMSHF) is a neurodevelopmental disorder described in just over two dozen patients with heterozygous genetic alterations involving SOX5, a gene encoding a transcription factor regulating cell fate and differentiation in neurogenesis and other discrete developmental processes. The genetic alterations described so far are mainly microdeletions. The present study was aimed at increasing our understanding of LAMSHF, its clinical and genetic spectrum, and the pathophysiological mechanisms involved. Methods Clinical and genetic data were collected through GeneMatcher and clinical or genetic networks for 41 novel patients harboring various types ofSOX5 alterations. Functional consequences of selected substitutions were investigated. Results Microdeletions and truncating variants occurred throughout SOX5. In contrast, most missense variants clustered in the pivotal SOX-specific high-mobility-group domain. The latter variants prevented SOX5 from binding DNA and promoting transactivation in vitro, whereas missense variants located outside the high-mobility-group domain did not. Clinical manifestations and severity varied among patients. No clear genotype-phenotype correlations were found, except that missense variants outside the high-mobility-group domain were generally better tolerated. Conclusions This study extends the clinical and genetic spectrum associated with LAMSHF and consolidates evidence that SOX5 haploinsufficiency leads to variable degrees of intellectual disability, language delay, and other clinical features

    <i>GRIN2A</i>-related disorders:genotype and functional consequence predict phenotype

    Get PDF
    Alterations of the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2A, encoded by GRIN2A, have been associated with a spectrum of neurodevelopmental disorders with prominent speech-related features, and epilepsy. We performed a comprehensive assessment of phenotypes with a standardized questionnaire in 92 previously unreported individuals with GRIN2A-related disorders. Applying the criteria of the American College of Medical Genetics and Genomics to all published variants yielded 156 additional cases with pathogenic or likely pathogenic variants in GRIN2A, resulting in a total of 248 individuals. The phenotypic spectrum ranged from normal or near-normal development with mild epilepsy and speech delay/apraxia to severe developmental and epileptic encephalopathy, often within the epilepsy-aphasia spectrum. We found that pathogenic missense variants in transmembrane and linker domains (misTMD+Linker) were associated with severe developmental phenotypes, whereas missense variants within amino terminal or ligand-binding domains (misATD+LBD) and null variants led to less severe developmental phenotypes, which we confirmed in a discovery (P = 10-6) as well as validation cohort (P = 0.0003). Other phenotypes such as MRI abnormalities and epilepsy types were also significantly different between the two groups. Notably, this was paralleled by electrophysiology data, where misTMD+Linker predominantly led to NMDAR gain-of-function, while misATD+LBD exclusively caused NMDAR loss-of-function. With respect to null variants, we show that Grin2a+/- cortical rat neurons also had reduced NMDAR function and there was no evidence of previously postulated compensatory overexpression of GluN2B. We demonstrate that null variants and misATD+LBD of GRIN2A do not only share the same clinical spectrum (i.e. milder phenotypes), but also result in similar electrophysiological consequences (loss-of-function) opposing those of misTMD+Linker (severe phenotypes; predominantly gain-of-function). This new pathomechanistic model may ultimately help in predicting phenotype severity as well as eligibility for potential precision medicine approaches in GRIN2A-related disorders

    Gain-of-function variants in the ODC1 gene cause a syndromic neurodevelopmental disorder associated with macrocephaly, alopecia, dysmorphic features, and neuroimaging abnormalities

    No full text
    Polyamines serve a number of vital functions in humans, including regulation of cellular proliferation, intracellular signaling, and modulation of ion channels. Ornithine decarboxylase 1 (ODC1) is the rate-limiting enzyme in endogenous polyamine synthesis. In this report, we present four patients with a distinct neurometabolic disorder associated with de novo heterozygous, gain-of-function variants in the ODC1 gene. This disorder presents with global developmental delay, ectodermal abnormalities including alopecia, absolute or relative macrocephaly, and characteristic facial dysmorphisms. Neuroimaging variably demonstrates white matter abnormalities, prominent Virchow-Robin spaces, periventricular cysts, and abnormalities of the corpus callosum. Plasma clinical metabolomics analysis demonstrates elevation of N-acetylputrescine, the acetylated form of putrescine, with otherwise normal polyamine levels. Therapies aimed at reducing putrescine levels, including ODC1 inhibitors, dietary interventions, and antibiotics to reduce polyamine production by gastrointestinal flora could be considered as disease-modifying therapies. As the ODC1 gene has been implicated in neoplasia, cancer surveillance may be important in this disorder
    corecore