3,282 research outputs found

    High frequency quasi-periodic oscillations in the black hole X-ray transient XTE J1650-500

    Get PDF
    We report the detection of high frequency variability in the black hole X-ray transient XTE J1650-500. A quasi-periodic oscillation (QPO) was found at 250 Hz during a transition from the hard to the soft state. We also detected less coherent variability around 50 Hz, that disappeared when the 250 Hz QPO showed up. There are indications that when the energy spectrum hardened the QPO frequency increased from ~110 Hz to ~270 Hz, although the observed frequencies are also consistent with being 1:2:3 harmonics of each other. Interpreting the 250 Hz as the orbital frequency at the innermost stable orbit around a Schwarzschild black hole leads to a mass estimate of 8.2 Msun. The spectral results by Miller et al.(2002, ApJ, 570, L69), which suggest considerable black hole spin, would imply a higher mass.Comment: Submitted to ApJ, 12 pages including 2 figure

    Proteomic Analysis of Protein Expression and Oxidative Modification in R6/2 Transgenic Mice A Model of Huntington Disease

    Get PDF
    Huntington disease (HD) is a hereditary neurodegenerative disorder characterized by motor, psychiatric, and cognitive symptoms. The genetic defect responsible for the onset of the disease, expansion of CAG repeats in exon 1 of the gene that codes for huntingtin on chromosome 4, has been unambiguously identified. On the other hand, the mechanisms by which the mutation causes the disease are not completely understood yet. However, defects in energy metabolism of affected cells may cause oxidative damage, which has been proposed as one of the underlying molecular mechanisms that participate in the etiology of the disease. In our effort to investigate the extent of oxidative damage occurring at the protein level, we used a parallel proteomic approach to identify proteins potentially involved in processes upstream or downstream of the disease-causing huntingtin in a well established HD mouse model (R6/2 transgenic mice). We have demonstrated that the expression levels of dihydrolipoamide S-succinyltransferase and aspartate aminotransferase increase consistently over the course of disease (10-week-old mice). In contrast, pyruvate dehydrogenase expression levels were found to be decreased in 10-week-old HD transgenic mice compared with young (4-week-old) mice. Our experimental approach also led to the identification of oxidatively modified proteins. Six proteins were found to be significantly oxidized in old R6/2 transgenic mice compared with either young transgenic mice or non-transgenic mice. These proteins are alpha-enolase, gamma-enolase (neuron-specific enolase), aconitase, the voltage-dependent anion channel 1, heat shock protein 90, and creatine kinase. Because oxidative damage has proved to play an important role in the pathogenesis and the progression of Huntington disease, our results for the first time identify specific oxidatively modified proteins that potentially contribute to the pathogenesis of Huntington disease

    Comparative Proteomic Analyses of the Parietal Lobe from Rhesus Monkeys Fed a High-Fat/Sugar Diet With and Without Resveratrol Supplementation, Relative to a Healthy Diet: Insights Into the Roles of Unhealthy Diets and Resveratrol on Function

    Get PDF
    A diet consisting of a high intake of saturated fat and refined sugars is characteristic of a Western-diet and has been shown to have a substantial negative effect on human health. Expression proteomics were used to investigate changes to the parietal lobe proteome of rhesus monkeys consuming either a high fat and sugar (HFS) diet, a HFS diet supplemented with resveratrol (HFS+RSV), or a healthy control diet for 2 years. Here we discuss the modifications in the levels of 12 specific proteins involved in various cellular systems including metabolism, neurotransmission, structural integrity, and general cellular signaling following a nutritional intervention. Our results contribute to a better understanding of the mechanisms by which resveratrol functions through the up- or down-regulation of proteins in different cellular sub-systems to affect the overall health of the brain

    Plasma and Serum Proteins Bound to Nanoceria: Insights into Pathways by which Nanoceria May Exert Its Beneficial and Deleterious Effects \u3cem\u3eIn Vivo\u3c/em\u3e

    Get PDF
    Nanoceria (CeO2, cerium oxide nanoparticles) is proposed as a therapeutic for multiple disorders. In blood, nanoceria becomes protein-coated, changing its surface properties to yield a different presentation to cells. There is little information on the interaction of nanoceria with blood proteins. The current study is the first to report the proteomics identification of plasma and serum proteins adsorbed to nanoceria. The results identify a number of plasma and serum proteins interacting with nanoceria, proteins whose normal activities regulate numerous cell functions: antioxidant/detoxification, energy regulation, lipoproteins, signaling, complement, immune function, coagulation, iron homeostasis, proteolysis, inflammation, protein folding, protease inhibition, adhesion, protein/RNA degradation, and hormonal. The principal implications of this study are: 1) The protein corona may positively or negatively affect nanoceria cellular uptake, subsequent organ bioprocessing, and effects; and 2) Nanoceria adsorption may alter protein structure and function, including pro- and inflammatory effects. Consequently, prior to their use as therapeutic agents, better understanding of the effects of nanoceria protein coating is warranted

    The role of charge in the toxicity of polymer-coated cerium oxide nanomaterials to Caenorhabditis elegans

    Get PDF
    This study examined the impact of surface functionalization and charge on ceria nanomaterial toxicity to Caenorhabditis elegans. The examined endpoints included mortality, reproduction, protein expression, and protein oxidation profiles. Caenorhabditis elegans were exposed to identical 2–5 nm ceria nanomaterial cores which were coated with cationic (diethylaminoethyl dextran; DEAE), anionic (carboxymethyl dextran; CM), and non-ionic (dextran; DEX) polymers. Mortality and reproductive toxicity of DEAE-CeO2 was approximately two orders of magnitude higher than for CM-CeO2 or DEX-CeO2. Two-dimensional gel electrophoresis with orbitrap mass spectrometry identification revealed changes in the expression profiles of several mitochondrial-related proteins and proteins that are expressed in the C. elegans intestine. However, each type of CeO2 material exhibited a distinct protein expression profile. Increases in protein carbonyls and protein-bound 3-nitrotyrosine were also observed for some proteins, indicating oxidative and nitrosative damage. Taken together the results indicate that the magnitude of toxicity and toxicity pathways vary greatly due to surface functionalization of CeO2 nanomaterials

    Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements

    Full text link
    For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w=−1w=-1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density ΩΛ\Omega_\Lambda confirms other measurements from supernovae, galaxy clusters and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.Comment: 4 pages, 3 figures; replaced with version accepted by Physical Review Letters, added sentence on models with non-standard primordial power spectr

    3D-Stereoscopic Immersive Analytics Projects at Monash University and University of Konstanz

    Get PDF
    Immersive Analytics investigates how novel interaction and display technologies may support analytical reasoning and decision making. The Immersive Analytics initiative of Monash University started early 2014. Over the last few years, a number of projects have been developed or extended in this context to meet the requirements of semi- or full-immersive stereoscopic environments. Different technologies are used for this purpose: CAVE2ℱ (a 330 degree large-scale visualization environment which can be used for educative and scientific group presentations, analyses and discussions), stereoscopic Powerwalls (miniCAVEs, representing a segment of the CAVE2 and used for development and communication), Fishtanks, and/or HMDs (such as Oculus, VIVE, and mobile HMD approaches). Apart from CAVE2ℱ all systems are or will be employed on both the Monash University and the University of Konstanz side, especially to investigate collaborative Immersive Analytics. In addition, sensiLab extends most of the previous approaches by involving all senses, 3D visualization is combined with multi-sensory feedback, 3D printing, robotics in a scientific-artistic-creative environment

    Detection of the Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmology Telescope

    Full text link
    We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2-degree angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda Cold Dark Matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4-sigma detection of the lensing signal measures the amplitude of density fluctuations to 12%.Comment: 4 pages, 4 figures, replaced title and author list with version accepted by Physical Review Letters. Likelihood code can be downloaded from http://bccp.lbl.gov/~sudeep/ACTLensLike.htm
    • 

    corecore