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Abstract: 

This study examined the impact of surface functionalization and charge on ceria 

nanomaterial toxicity to Caenorhabditis elegans. The examined endpoints included 

mortality, reproduction, protein expression, and protein oxidation profiles. 

Caenorhabditis elegans were exposed to identical 2-5 nm ceria nanomaterial cores which 

were coated with cationic (diethylaminoethyl dextran; DEAE), anionic (carboxymethyl 

dextran; CM), and non-ionic (dextran; DEX) polymers. Mortality and reproductive 

toxicity of DEAE-CeO2 was approximately an order of magnitude higher than for CM-

CeO2 or DEX-CeO2. Two-dimensional gel electrophoresis with orbitrap mass 

spectrometry identification revealed changes in the expression profiles of several 

mitochondrial-related proteins and proteins that are expressed in the C. elegans intestine. 

However, each type of CeO2 material exhibited a distinct protein expression profile. 

Increases in protein carbonyls and protein-bound 3-nitrotyrosine were also observed for 

some proteins, indicating oxidative and nitrosative damage. Taken together the results 

indicate that the magnitude of toxicity and toxicity pathways vary greatly due to surface 

functionalization of CeO2 nanomaterials. 

 

KEYWORDS: ceria nanoparticle, nanotoxicology, proteomics, oxidative stress, surface 

charge 
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1. Introduction 

 CeO2 engineered nanomaterials (CeO2-ENMs) are valued for their catalytic 

properties, and they are used as diesel fuel additives, chemical/mechanical planarization 

agents in glass and semiconductor production, and in energy storage devices 

(Pirmohamed et al., 2010; Ranga, 2003; Steele, 1999; Steele and Heinzel, 2001). CeO2-

ENMs are also being explored for use in medical applications as therapeutic antioxidants 

(Chigurupati et al., 2013; Ciofani et al., 2014).  The manufacture, consumption, and 

disposal of these products can result in the release of CeO2-ENMs to the environment 

through wastewater effluent, sewage sludge biosolids, or atmospheric fallout of diesel 

particulates, with soils and sediments expected to be the ultimate sink in the environment 

(Collin et al., 2014a).     

Caenorhabditis elegans has emerged as a key model organism for ecotoxicity 

studies and nanotoxicity studies alike (Choi et al., 2014). C. elegans are a useful tool for 

toxicology research because their genome is fully sequenced, mapped and annotated, and 

it has a sizable suite of functional genomic tools, including large numbers of mutant and 

transgenic strains, and facile knockdown of gene expression through RNAi (Brenner, 

1974; Costanzo et al., 2000; Leung et al., 2008).  In a previous study, C. elegans 

exhibited decreased reproduction after exposure to 1 mg Ce/L CeO2-ENMs with 

diameters of 15 and 45 nm (Roh et al., 2010).  In contrast, decreased lifespan was 

observed in C. elegans after exposure to a far lower concentration of 0.14 µg Ce/L with 

diameters of 8.5 nm (Zhang et al., 2011).  A key difference between these studies was the 

surface chemistry of the CeO2-ENMs.  The former study investigated uncoated particles 

while the latter study used particles coated with hexamethyleneteramine.  The toxicity of 
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hexamethylenteramine (HMT) alone was not evaluated by Zhang et al., and it is possible 

that this coating is toxic by itself. Alternatively, it could be that differences in the surface 

chemistry of the particles themselves caused the dramatic differences in toxicity between 

these two studies.   

Studies in other model organisms provide evidence that surface charge is a key 

factor determining toxicity of CeO2-ENMs. Cationic CeO2-ENMs coated with aminated 

polyacrylic acid exhibited greater cytotoxicity to A549 and MCF-7 cancer cell lines than 

anionic polyacrylic acid-coated or non-ionic dextran-coated CeO2-ENMs (Asati et al., 

2010),  although comparison of the non-ionic CeO2-ENMs is somewhat complicated by 

the fact that its polymer coating was different than for the cationic and anionic materials 

and that the CeO2 cores themselves were prepared using different methods.  Our previous 

work indicated that toxicity and biotransformation of CeO-ENMs are dramatically altered 

by the charge of polymer surface coatings. (Collin et al., 2014b).  That same study 

demonstrated that Ce was partially reduced from Ce (IV) to Ce (III) in vivo and that the 

degree of reduction also depended on polymer surface coating charge.  The increased 

toxicity associated with the cationic CeO2-ENMs could be explained by increased 

electrostatic attraction to biological membranes as compared to negatively-charged 

particles (Chen et al., 2009; Goodman et al., 2004; Wang et al., 2012) and differences in 

subcellular distribution (Asati et al., 2010).  

 Oxidative stress often results from CeO2-ENM exposure, and has been observed 

in a variety of organisms including C. elegans, Pseudokirchneriella subcapitata, Daphnia 

magna, Danio rerio, Sprague Dawley rats, and Fisher rats (Rogers et al., 2015) (Hardas 

et al., 2012; Park et al., 2008; Van Hoecke et al., 2009; Yokel et al., 2009). However, the 
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specific role of CeO2-ENM surface charge on toxicity pathways and patterns of oxidative 

damage to biomolecules has not been well explored. Based on the influence of surface 

charge on subcellular distribution observed by Asati et al.  (2010) and the oxidation state 

of CeO2 particles observed by Collin et al. (2014b), we hypothesize that exposure to 

CeO2-ENMs with different surface charges will result in distinct patterns of protein 

expression and oxidative damage to proteins. 

To test our hypotheses, we used 2-4 nm CeO2-ENMs coated with 10 kDa dextran 

and functionalized them with either diethylaminoethyl groups to yield positively charged 

particles or carboxymethyl groups to yield negatively charged particles.  The advantage 

of this approach is that identical cores are used and the polymer used to coat the surface 

differs only by substitution of hydroxyl groups with functional groups that confer a net 

negative or net positive charge over a wide pH range. Mortality and reproduction were 

measured as lethal and sub-lethal endpoints of toxicity for this study, and expression and 

redox proteomics were utilized to investigate patterns of protein expression and oxidative 

damage.  

 

2. Materials and methods 

2.1 CeO2 nanomaterial synthesis and characterization.   The synthesis and 

characterization of the test materials has been previously described (Collin et al., 2014b). 

CeO2-ENMs (2-4 nm diameter) were first coated with 10 kDa dextran (DEX-CeO2). 

Dextran is not ionized at circumneutral pH and since the pH of zero net charge (PZC) of 

CeO2 is near 7, the particles have a zeta potential close to zero (Collin et al., 2014b).  

DEX-CeO2 particles were subsequently functionalized with diethylaminoethyl groups to 
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yield cationic particles (DEAE-CeO2) or carboxymethyl groups to yield anionic particles 

(CM-CeO2).   

 Primary particle diameter was determined by transmission electron microscopy 

(TEM) (JOEL 2010 F microscope; Tokyo, Japan). A NanoZS 90 Malvern Zetasizer 

(Malvern, United Kingdom) was used to measure hydrodynamic diameter (by dynamic 

light scattering; DLS) and electrophoretic mobility (by phase analysis light scattering; 

PALS) of CeO2-ENMs in C. elegans exposure media (moderately hard reconstituted 

water; MHRW (USEPA, 2002)). The Hückel approximation was used to estimate zeta 

potential from electrophoretic mobility of the particles. Verification of the expected 

functionalization of the coatings was performed using Fourier transform infrared 

spectroscopy (FTIR). The FTIR results are reported by Collin et al. (2014b). Ceria 

suspensions were acid digested following US EPA method 3015 (spectrometry, 1998) 

and concentration was measured by inductively coupled plasma mass spectrometry  (ICP-

MS) (Agilent 7500cx, Santa Clara, CA).  

2.2 Mortality. Caenorhabditis elegans (Wild type, N2 Bristol Strain) were obtained from 

the Caenorhabditis Genetics Center (Minneapolis, MN) and age synchronization was 

performed according to previously established methods (Donkin and Williams, 1995; 

Materials), 2012). Nine to eleven L3-stage nematodes were exposed to one mL of CeO2-

ENMs (0-5,000 mg Ce/L) for 24 hours with feeding (10 µL/mL E. coli; OP50 strain) or 1 

mL of CeO2-ENMs (0-5,000 mg Ce/L) without feeding. C. elegans were counted as dead 

if unresponsive to a gentle prodding (Williams and Dusenbery, 1990). Percent mortality 

was compared between controls and treatments using Bonferroni-corrected two-tailed t-

tests (α = 0.05).  For this and the reproduction assay discussed below, concentrations 
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were selected to attempt to obtain a full concentration response curve.  These 

concentraitons probably exceed what is expected in the natural environment by a large 

margin (Collin et al., 2014a), but they may be relevant to exposures where CeO2 is used 

as a drug.  Comparision of the effects of surface coating requires that full concentration-

response curves be determined. 

2.3 Reproduction. L2-stage nematodes were exposed to CeO2-ENMs for 48 hours with 

feeding using E.coli  OP50 strain  at the rate of 10 µL/mL and OD600 = 1 for the stock 

solution. The exposures were conducted in moderately hard reconstituted water (USEPA, 

2002) and the exposure medium and food were refreshed at 24 hours. After the exposure, 

individual nematodes were placed on 6 cm K-agar plates (Williams and Dusenbery, 

1988) seeded with E. coli OP50 and allowed to lay eggs for 48 hours before transfer to a 

new K-agar plates. This was repeated thrice. After removing the adult nematode, 

juveniles were stained with 0.5 mg/L rose bengal (0.5 mg/L) (Acros Organics, New 

Jersey, USA) and heat killed for one hour at 50
o
C prior to counting offspring. Nematodes 

were counted as viable if they were fully emerged from the egg cuticle. Each CeO2-ENM 

concentration was replicated five or six times. Reproduction was quantified by counting 

the total number of offspring per nematode and controls and treatments were compared 

using two-tailed Bonferroni corrected t-tests (α = 0.05). 

2.4 Protein expression and redox proteomics. 

Stage L1 nematodes were exposed for 48 hours in six mL of CeO2-ENM at 

concentrations that corresponded to the EC30 for reproduction for each particle type as 

determined in the previously described assays (500 mg/L DEX-CeO2, 750 mg/L CM-

CeO2, and 3.25 mg/L DEAE-CeO2). The EC30 for reproduction was chosen so that the 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 10 

nematodes would be exposued to equitoxic concentrations of the materials. Therefore, 

differences in proteomic responses can be interpreted as differences in mechanisms of 

toxicity and not differences in degree of toxicity.  After the 48-hour exposure period, 

nematodes were transferred to K-agar plates to grow for an additional 24 hours to 

increase the amount of protein available for extraction. For protein extraction, 200 to 300 

nematodes were suspended in 0.5 mL sucrose isolation buffer (0.32 M sucrose, 2 mM 

EDTA, 2 mM EGTA, 20 mM HEPES) with a protease inhibitor cocktail (104 mM 4-(2-

Aminoethyl) benzenesulfonyl fluoride hydrochloride, 80 µM aprotinin, 4 mM bestatin, 

1.4 mM E-64, 2 mM  leupeptin, 1.5 mM pepstatin A). The nematode pellet was frozen at 

-80C and then thawed in an ice bath and ultrasonicated with a Misonix Ultrasonic 

Liquid Processor (Misonix, Inc., New York, USA) using the microtip for two 10 second 

intervals at 30% amplitude. Protein concentration was determined using a BCA Protein 

Assay Reagent kit (Pierce Protein Biology Products, Rockford, IL). Extracted proteins 

were stored at -80
 
C. 

2.4.1 Slot Blots. The slot blot technique (Bio-Dot SF apparatus, Bio-Rad Laboratories, 

Eugene, OR) was used to investigate changes in concentrations of three major markers of 

oxidative damage: protein carbonyls, protein-bound 3-nitrotyrosine (3NT), and protein-

bound 4-hydroxy-2-nonenal (HNE). For protein carbonyls, samples were derivatized with 

2,4-dinitrophenylhydrazine (DNPH) for recognition by a primary antibody as previously 

described (Sultana and Butterfield, 2008). Proteins were bound to nitrocellulose 

membranes (0.2  µm, Bio-Rad) and incubated with primary antibodies for derivatized 

protein carbonyls, 3-NT, and HNE.  The following antibodies were used: Rb x 

dinitrophenol (EMD Millipore, Billerica, MA) diluted 1:1,000, anti-nitrotyrosine (Sigma 
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Aldrich, St. Louis. MO) diluted 1:10,000, anti-HNE (Alpha Diagnostics International, 

San Antonio, TX) diluted 1:10,000. Membranes were then washed three times with wash 

blot (0.2% w/v Tween 20 and 0.01% w/v sodium azide dissolved in PBS), incubated for 

one hour with anti-rabbit IgG alkaline phosphatase secondary antibody diluted to 

1:10,000, developed with BCIP/NBT enzyme conjugates, and scanned into the 

ChemiDoc MP System with ImageLab software (Bio-Rad). Technical replicates 

(individual blots) were averaged for each biological replicate and n corresponds to the 

number of independent biological replicates. Normalized data from slot blots were 

evaluated with analysis of variance (ANOVA) followed by Tukey’s test (α = 0.05). 

Normality and homoscedasticity assumptions were tested using Shapiro-Wilk’s and 

Bartlett’s tests, respectively.  

2.4.2 Protein expression by two-dimensional gel electrophoresis.  Extracted protein (150 

µg) was precipitated with trichloroacetic acid and shaken for 90 minutes with 200 uL 

rehydration buffer (8M urea, 2M thiourea, 2.0 % (w/v) CHAPS, 50 mM DTT, 0.2% 

biolytes, 0.01% Bromophenol Blue). Samples were placed on ReadyStrip IPG strips pH 

3-10 (BioRad) and actively rehydrated (20 °C for 18 hours at 50 V) and isoelectrically 

focused (300 V for two hours, 500 V for two hours, 1,000 V for two hours, 8,000 V for 

eight hours) in a Protean Isoelectric Focusing (IEF) instrument (BioRad). For phase two 

separation, IPG strips were incubated for 10 minutes in the dark with equilibration buffer 

A (6M urea, 2% (w/v) SDS, 0.375M Tris-HCl (pH 8.8), 20% (v/v) glycerol, and 0.5% 

DTT), and 10 minutes in the dark with equilibration buffer B (6M urea, 2% (w/v) SDS, 

0.375M Tris-HCl (pH 8.8), 20% (v/v) glycerol, and 4.5% IA). IPG strips were rinsed 

with TGS running buffer and placed in linear gradient (8-16%) Tris-HCl polyacrylamide 
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gels, 11 cm IPG/prep+1 well (Biorad) for gel electrophoresis (200 V for 65 minutes). 

Gels were fixed (10% acetic acid and 50% methanol) for one hour and stained with 

SYPRO ruby for 21 hours for protein detection.  

2.4.3 Western blotting for detection of protein carbonyls, 3-NT, and HNE. Proteins 

were transferred to 0.2  µm nitrocellulose membranes in a Trans-blot Turbo Blotting 

instrument (BioRad). Membranes were blocked overnight in 3% BSA and incubated with 

primary antibody (Rb x dinitrophenyl diluted 1:1,000; anti-3-NT diluted 1:10,000; and 

anti-HNE diluted 1:10,000) for two hours (blots developed for protein carbonyls were 

first derivatized with DNPH before blocking). Membranes were washed three times in 

wash blot (5 min each) and incubated for one hour with secondary antibody (1:10,000 

anti-rabbit IgG alkaline phosphatase for colorimetric development or 1:10,000 

horseradish peroxidase for chemiluminescent development). Membranes were washed 

three more times in wash blot (5 min, 10 min, 10 min) and developed by colorimetric 

methods (BCIP/NBT solution) or by chemiluminescent methods with a Clarity Western 

ECL substrate kit (Biorad, Hercules, CA).  

2.4.4 Image Analysis. SYPRO ruby and western blot images were captured using 

ImageLab software and analyzed by PDQuest 2D Analysis software (Biorad). For 

expression proteomics, the SYPRO ruby gels were matched to a master gel, and spot 

intensities for SYPRO ruby stained gels were quantified by densitometry in PDQuest. 

Individual gel intensities were normalized to the total density of each gel. The spot 

fluorescence intensities were compared between control spots and treatment spots and 

statistical significance was determined using two-tailed t-tests (α = 0.05). For redox 

proteomics, two master gels were chosen (the master gel from the SYPRO ruby stained 
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gel set and a master gel from the oxidative marker western blot set), matched, and 

analyzed in PDQuest. Spot optical densities from the protein western blots were 

normalized to the SYPRO ruby spot fluorescence intensities, followed by comparison of 

values between controls and treatments. This procedure was repeated for western blots 

developed for protein carbonyl, 3-NT, and HNE.  

2.4.5 Trypsin digestion and peptide extraction. Spots that exhibited statistically 

significant differences from controls in PDQuest were chosen for trypsin digestion, 

peptide extraction, analysis by nanoLC-orbitrap-MS/MS. Methods for peptide extraction, 

trypsin digestion, and identification by nanoLC-orbitrap-MS/MS have been previously 

described  (Triplett et al., 2015).  

2.5 Experimental validation. A subset of proteins/genes that were significantly different 

from controls in PDQuest and identified by nanoLC-orbitrap-MS/MS were chosen for 

experimental validation. We took a multifaceted approach to validation, taking advantage 

of traditional methods as well as functional genomics tools available for C. elegans.  

Validation procedures included 1D gel verification, Q-RT-PCR, C. elegans mutant 

reproduction assay, C. elegans GFP strain fluorescence assay, and immunoprecipitation.  

2.5.1  1D western blots. Protein (25 µg) was added to sample buffer (6.8 pH 0.5 M Tris, 

40% glycerol, 8% SDS, 20% β-mercaptoethanol, 0.01% Bromophenol Blue), heated for 

five minutes at  95 °C, and cooled on ice. Samples were loaded onto 12% Criterion TGX 

stain-free gels (Biorad) in MOPS buffer. Gels were run for 15 minutes at 80 V and 90 

minutes at 120 V, scanned with a BioRad ChemiDoc XRS+ imaging system, transferred 

to nitrocellulose membranes (0.2  µm), and developed for the protein of interest as 

described in section 2.4.3. Bands in the western blot were normalized to the total protein 
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in the 1D gel. Treatments values were compared to controls with t-tests (α = 0.10). We 

accepted a higher probability of a type one error for this tests because we could only 

perform a small number of replicates. 

2.5.2  Verification by Quantitative Real Time Polymerase Chain Reaction (qRT-PCR). 

Caenorhabditis elegans (N2 strain) were exposed as described in section 2.4.0. RNA was 

extracted with Trizol, treated with DNase and cleaned up with the RNeasy kit (Qiagen). 

After extraction and clean up, 150 ng RNA/sample was converted into cDNA with a 

High Capacity RNA-to-cDNA Kit by (Applied Biosystems). cDNA was added to 

TaqMan fast advanced master mix and TaqMan gene assay containing relevant primers 

and probes in a volume of 10 µL. The amplification reactions were performed in 

triplicates on StepOnePlus Real-Time PCR System (Applied Biosystems) following 10 

min at 95°C, and 40 cycles of 10 s at 95°C and 30 s at 60°C. Negative controls and minus 

reverse transcription (−RT) negative controls were included for every gene/sample to 

check for DNA contamination. Among the genes selected for the verification were two 

heat shock proteins (hsp-1 and hsp-6) and enolase (enol-1). We used TaqMan primer-

probe sets for this.  The assay IDs and primer effeciencies for these primer-probe sets are 

Ce02469085_g1(92.6%) for hsp-1, Ce02474686_g1 (109.2%) for hsp-6, and 

Ce02421723_g1 (107.3%) for enol-1. The reference gene used for normalization, 

Y45F10D.4 (ID = Ce02467252_g1, effeciency = 99.8%), has been previously described 

(Zhang et al., 2012), and its expression did not vary among significantly treatments as 

confirmed by qRT-PCR. qRT-PCR data were analyzed using the Relative Expression 

Software Tool (REST) (Pfaffl et al., 2002).  Statistical significance was determined using 

REST at α = 0.05. 
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2.5.3 Verification with mutant reproduction assay. Mutants for unc-15 (strain CB-1215) 

were acquired from the Caenorhabditis Genetics Center and exposed as described in 

section 2.4.0. After the 48-hour exposure, a reproduction assay was performed as 

described in section 2.3. Significance was determined using t-tests (α = 0.05) comparing 

number offspring between mutant and wild-type.  

2.5.4  Verification with fluorescence assay using GFP strain. A green fluorescent 

protein (GFP) transgenic fusion strain for hsp-6, hsp6::gfp (zcIs13), was acquired from 

the Caenorhabditis Genetics Center and exposed as described in section 2.4.0. GFP 

fluorescence was analyzed with an epifluorescence microscope (Nikon, Eclipse 90i, 

Tokyo, Japan) at 40X magnification at 24 hr, and 20X magnification at 48 hr.  Decreased 

magnification at 48 hours was needed to maintain the larger nematodes in the field of 

view but all other optical parameters were held constant.  Regions of interest were drawn 

around images of the nematodes acquired using differential interference contrast (DIC) 

imaging, and overlaid with fluorescence images obtained using a GFP filter set.  The 

mean pixel intensities for GFP fluorescence were calculated and controls and treatments 

were compared using t-tests (α = 0.05). Image analysis was performed using the NIS-

Elements software package (Nikon). 

2.5.5 Redox marker verification by immunoprecipitation. Immunoprecipitation was 

performed with 100 µg of C. elegans protein, and immunoprecipitation and western 

blotting validation were performed following methods from a previously described 

protocol (Triplett et al., 2015). Antibodies that were used for redox verification included  

anti-PMT-2 (Abmart, Shanghai, China) (200 μg/mL; 1:600 dilution) and anti-ATP-

2(WP:CE29950 generated using Genomic Antibody Technology at Strategic Diagnostics 
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Inc.) (SDI, Newark, DE).  Data were tested using Bonferroni corrected t-tests with α = 

0.10.  We accepted a higher probability of a type one error for this tests because we could 

only perform a small number of replicates. 

 

3. Results  

3.1 CeO2 nanomaterial characterization. TEM (SI Fig. 1) indicated that all CeO2-ENMs 

had similar primary particle sizes (3.36 ± 0.80 nm for DEX-CeO2, 3.88 ± 0.90 nm for 

CM-CeO2, and 3.99 ± 0.71 nm for DEAE-CeO2). The Z-average (intensity weighted) 

diameters from DLS were 15.69 nm for DEX-CeO2, 8.72 nm for CM-CeO2, and 13.54 

nm for DEAE-CeO2. Because Z-avearge diameters are intensity weighted, these small 

differences are not that significant. They could be a result of small differences in 

aggregation state or confirmation of the polymer on the surface.  PALS analysis 

confirmed that each particle type had distinct neutral, negative, and positive charges in 

the exposure media (mean zeta potential of 2.27 mV for DEX-CeO2, -22.2 mV for CM-

CeO2, and +27 mV for DEAE-CeO2).  

3.2 Caenorhabditis elegans mortality. None of the CeO2-ENM treatments caused more 

than 50% mortality at the concentrations tested in L3 nematodes in the absence of food 

after a 24-hour exposure. DEAE-CeO2 caused the highest mortality at all tested 

concentrations compared to CM-CeO2 and DEX-CeO2 nanomaterials (SI Fig. 2A). The 

addition of food resulted in slightly increased mortality in DEX-CeO2 and DEAE-CeO2 at 

1,000 mg/L, but not in CM-CeO2 exposures.  Most notably, mortality of C. elegans in 

5,000 mg/L DEAE-CeO2 24 hour fed exposures was 80% ± 10%. This is in contrast to 

mortality in CM-CeO2 (16.4% ± 5%) and DEX-CeO2 (25 ± 6%,) (SI Fig. 2B). 
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3.3 Reproduction. All three CeO2-ENM treatments reduced the number of nematode 

offspring compared to the control at the tested concentrations in a concentration-

dependent manner. Control nematodes produced 168 ± 32 offspring (mean ± standard 

deviation). Nematodes exposed to DEX-CeO2/L nanomaterials fewer offspring compared 

to controls at concentrations greater than 600 mg Ce/L (p < 0.05). Reproduction in CM-

CeO2 exposed nematodes was significantly reduced at a concentration of 1,000 mg/L (87 

± 77 offspring), and reproduction in CeO2-DEAE exposed nematodes was only 

significantly reduced at 3.25 mg/L (87 ± 49 offspring) (Fig. 1). The EC30 values for 

reproduction for DEAE-CeO2 were two orders of magnitude lower (3.25 mg/L) than to 

CM-CeO2 (650 mg/L) and DEX-CeO2 (500 mg/L).  

3.4 Protein expression and oxidative proteomics  

3.4.1 Immunochemical slot blots. The LC30 concentrations derived from the L2 mortality 

experiments were used to investigate the impacts of CeO2-ENM exposure on oxidative 

and nitrosative stress in sublethal exposures. There was a marginally significant decrease 

in HNE levels for the DEAE-CeO2 treatment compared to controls (p = 0.106). DEX-

CeO2 and CM-CeO2 had no significant effect on HNE levels (p = 0.411). Protein 

carbonyls and 3NT levels were not significantly different from controls for all three 

treatments (p = 0.733) (SI Fig. 3). 

3.4.2 Protein Expression Table 1 lists a summary of all proteins that were differentially 

expressed compared to controls. Table 1 columns are for spot numbers, fold change, p-

value, and orbitrap MS-MS analysis (Swissprot accession number, percent of protein 

sequence covered by matching peptides, the number of peptide sequences that were 

identified by orbitrap-MS/MS, the confidence score, and the expected molecular weight 
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and isoelectric point of the identified protein). Figure 2A-D shows representative 

examples of SYPRO ruby stained gels generated from control, DEX-CeO2, CM-CeO2, 

and DEAE-CeO2 treated nematodes protein. Twenty proteins exhibited significantly 

altered expression compared to controls. The ten proteins from DEX-CeO2 protein gels 

that exhibited significantly altered expression compared to controls include myosin light 

chain 3 (MLC-3), pyruvate dehydrogenase (PDHB-1), superoxide dismutase (SOD-1), 

transketolase (TKT-1), peroxidreductase (PRDX-1), aldehyde dehydrogenase (ALH-12), 

heat-shock-related 70 kDa protein 1 (HSP70a; product of hsp-1) and protein 6 (HSP-70f; 

product of hsp-6), elongation factor (EEF-2), and paramyosin (UNC-15). The four 

proteins from CM-CeO2 that exhibited significantly altered expression compared to 

control gels include probable s-adenosylmethionene synthase (SAMS-1), enolase 

(ENOL-1), paramyosin (UNC-15), and putative aminopeptidase (LAP-2). The six 

proteins from DEAE-CeO2 that exhibited significantly altered expression compared to 

control gels include glyceraldehyde-3-phosphate dehydrogenase (GAPDH), v-type proton 

ATPase (VHA-12), enolase (ENOL-1), seryl amino acyl tRNA synthase (SARS-1), 

glutamate dehydrogenase (GDH-1), and leucine aminopeptidase (LAP-2).  

3.4.3 Western blotting and detection of protein carbonyl, 3NT, and HNE Table 2 lists a 

summary of proteins that exhibited significantly altered oxidative and nitrosative 

modifications compared to control proteins. The columns in table 2 correspond to the 

columns described in supplementary table 1. Figure 3 shows representative 3NT western 

blots generated from control (Fig. 3A), DEX-CeO2 (Fig. 3B), and CM-CeO2 (Fig. 3C) 

treated nematode protein. Actin 5 (ACT-5) from DEX-CeO2 blots and calreticulin (CRT-

1), aspartic protease (ASP-5), phosphoethanolamine-N-methyltransferase (PMT-2), 
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adenosylhomocysteinase (AHCY-1), galectin (LEC-6), and nucleoside diphosphate 

kinase (NKD-1) from CM-CeO2 blots exhibited significantly increased 3NT markers. 

Only two proteins, ATP synthase beta (ATP2) and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), from CM-CeO2 exhibited significant increases in protein 

carbonyls compared to controls. No proteins from DEAE-CeO2 treatments exhibited 

significant changes in HNE, 3NT or protein carbonyls.  

3.5 Validation Experiments  

3.5.1 1D protein validation: Protein expression analysis in PDQuest indicated a 1.6-fold 

decrease in the expression of PDHB-1 after DEX-CeO2 exposure (p < 0.05). One-

dimensional gel verification indicated a 1.35-fold decrease in PDHB-1 expression in 

DEX-CeO2 treatments (p = 0.071). Supplementary figure 4 shows the PDHB-1 western 

blot aligned with the total protein gel image for replicates 1-3 (control lanes 1, 5, and 9; 

DEX-CeO2 in lanes 2, 6, and 10) (SI Fig. 4A) and replicates 4-6 (control lanes 1, 5, and 

9, DEX-CeO2 in lanes 2, 6, and 10) ( SI Fig. 4B). These findings confirmed the down-

regulation of PDHB-1 in C. elegans after exposure to DEX-CeO2.  

3.5.2 qRT-PCR: Protein expression analysis in PDQuest indicated a significant down-

regulation at 2.62 and 2.77 fold change in the protein expression of HSP70a and HSP70f, 

respectively. The genes encoding these two proteins,hsp-1 (gene for HSP70a protein) and 

hsp-6 (gene for HSP70f protein), were analyzed by qRT-PCR using four independent 

replicates. Expression of hsp-1 was down-regulated by 1.38-fold (p = 0.001) and 

expression of hsp-6 was down-regulated by 1.73-fold (p = 0.02). These data are 

supportive of the down-regulated expression of HSP70a and HSP70f in C. elegans after 
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exposure to DEX-CeO2. Protein expression analysis in PDQuest indicated a significant 

increase in the expression of ENOL-1 (increase of 1.97-fold) in CM-CeO2 treatments 

(1.97-fold change, p = 0.01) and DEAE-CeO2 treatments (2.23 fold change, p = 0.01). 

There was also up-regulation of enol-1 observed in CM- and DEAE-CeO2 treatments via 

aRT-PCR (1.52 and 1.09-fold change, respectively), but this was not statistically 

significant (SI Fig. 5).  

3.5.3 Mutant reproduction assay: Protein expression analysis in PDQuest indicated a 

significant down-regulation of UNC-15 in DEX-CeO2 (-2.94 fold change and p = 0.025) 

and CM-CeO2 treatments (-333 fold change and p = 0.003). Results from the unc-15 

mutant reproduction assay indicated a 26% reduction in reproduction in mutant 

nematodes exposed to DEX-CeO2 compared to N2 (wild-type) nematodes exposed to 

DEX-CeO2 (p = 0.06). A 62% reduction in reproduction was also observed in unc-15 

mutant nematodes exposed to CM-CeO2 compared to N2 nematodes exposed to CM-

CeO2 (p = 0.007). These data are supportive of the down-regulation of the UNC-15 

protein observed in C. elegans after exposure to DEX- and CM-CeO2 (SI Fig. 6).  

3.5.4 GFP Fluorescence expression assay: Protein expression analysis in PDQuest 

indicated a significant down-regulation in HSP70f (predicted protein from hsp-6 gene 

(Heschl and Baillie, 1990)) in C. elegans after exposure to DEX-CeO2. In addition to 

validation by qRT-PCR (section 3.5.2), we investigated the reduction in HSP70f 

expression using a GFP reporter strain (gfp::hsp-6). GFP fluorescence was found to be 

significantly decreased at 24 hours post-exposure (reduction of 15%, p = 0.003), but this 

effect was not observed at 48 hours post-exposure (increase of 8%, p = 0.35). These data 
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are supportive of the down-regulation of HSP70f in C. elegans after exposure to DEX-

CeO2 (Fig. S7).  

3.5.5 Redox verification by immunoprecipitation To validate the changes that were 

observed regarding protein carbonyls and 3NT, immunoprecipitation was performed on 

two proteins of interest, PMT-2 and ATP-2. (increased 3NT observed for PMT-2 proteins 

after CM-CeO2 exposure and elevated protein carbonyls observed on ATP2 proteins after 

CM-CeO2 exposure). Results indicated increased 3NT for PMT-2, but this was not 

statistically significant. Increased protein carbonyls were observed on ATP-2, but this 

was also not statistically significant. Due to a limited amount of protein available for 

these assays, only a small number of replicates could be performed, limiting statistical 

power. These fact that both assays indicated changes in the same direction as the 2-D gels 

is supportive of increased 3NT and protein carbonyls observed in PMT-2 and ATP-2, 

respectively (Fig S8).   

4. Discussion 

 This study investigated the differential toxicity of three CeO2-ENM particle types 

that specifically vary in surface charge conferred by addition of different functional 

groups to dextran coatings. Our findings indicate that surface chemistry is an important 

factor that influences CeO2-ENM toxicity, where positively charged CeO2-ENMs induce 

greater mortality and reproductive toxicity compared to neutral and negatively charged 

particles at similar concentrations. These data also indicate different modes of toxicity for 

the three differentially charged CeO2-ENMs that were investigated. These results 

highlight that CeO2-ENM toxicity can vary greatly among particle types, and that surface 

chemistry and charge are important characteristics that influence both the extent and 
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nature of CeO2-ENM toxicity.  Toxicity of CeO2 to C. elegans has occurred over a wide 

range; however, effects of bare particles are generally seen at concentraitons around 1 

mg/L (Collin et al., 2014a).   That suggests that the DEAE coated particles are similar in 

toxicity to bare particles. The pH of zero net charge of ceria is around 7.6, so bare 

particles would be positively charged below this pH value (Gulicovski et al., 2014).   Few 

studies have systematically compared size, although Roh et al., (2013), showed that nano 

CeO2 is more toxic than micron-sized CeO2 in C. elegans.  The particles in the present 

study are among the smallest particles which have been studied for toxicity to date.  We 

are not aware of studies that systematically compare shape either.  Our results taken 

together with those of Zhang et al., (2011) and Asati et al., (2010), indicate that surface 

chemistry is the major determinant of toxicity within the nano size range. 

 

 It is important to keep in mind throughout the discussion that animals used for 

proteomics and other tests were exposed at equitoxic concentraitons, the EC30 for 

reproduction, therefore differences truly reflect differences in mechanism of toxicity, not 

in degree of toxicity.  It is also important to keep in mind that we previously tested the 

toxicity of the free coatings and found no effects on reproduction or mortality at the 

highest concentrations at which they could occur as free polymer in the present study 

(Collin et al., 2014b). 

 

4.1 Proteomic responses associated with cationic CeO2-ENM toxicity 

 Cationic CeO2-ENMs increased C. elegans mortality and decreased reproduction 

at concentrations that were one and two orders of magnitude lower than anionic or neutral 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 23 

CeO2-ENMs, indicating a higher potential for toxicity of ceria nanomaterials with 

cationic surface charges. The toxicity of cationic nanomaterials has been previously 

linked to elevated bioaccumulation in cells compared with neutral or negative particle 

types, and this is related to increased biological activity and toxicity of cationic 

nanomaterials (Frohlich, 2012). Previous work in our laboratory agrees with this, as the 

accumulation of Ce in C. elegans exposed to DEAE-CeO2 was far greater than the 

accumulation of Ce in C. elegans exposed to DEX- and CM-CeO2 when exposed at 

equivalent mass concentrations of Ce (Collin et al., 2014b).  

Toxicity related to cationic nanomaterials could also be related to specific 

localization of particles to subcellular compartments. Further investigation of ceria 

bioaccumulation in C. elegans in our laboratory revealed a smaller reduction of Ce from 

Ce(IV) to Ce(III) after uptake of positively charged DEAE-CeO2 by nematodes compared 

to uptake of DEX- and CM-CeO2 (Collin et al., 2014b). We hypothesized that these 

differences in Ce speciation may be due to differences in the subcellular distribution of 

the particles, resulting in redox activity that is specific to the chemical conditions of those 

subcellular compartments. Cationic CeO2-ENMs can localize to endosomes and 

lysosomes (Frohlich, 2012). Our own data support this, as we observed an increase in the 

protein expression of VHA-12 in C. elegans after exposure to DEAE-CeO2. VHA-12 is 

subunit of a vacuolar proton pump that mediates acidification of endosomes, which 

eventually mature to become lysosomes to aid in degradation of foreign material taken 

into the cell by endocytosis (Syntichaki et al., 2005). Increased protein expression of 

VHA-12 is indicative of endosome acidification, and this could signify an attempt of the 

cell to degrade the DEAE-CeO2 particles localized within the endosomes.  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 24 

Results from expression proteomics indicate the exposure of C. elegans to DEAE-

CeO2 changed the expression of proteins related to carbohydrate metabolism. Enolase 

(ENOL-1) expression was increased and glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) and glutamate dehydrogenase (GDH-1) expression were decreased in 

nematodes exposed to DEAE-CeO2. ENOL-1 and GAPDH are proteins with an important 

role in glycolysis. GAPDH is considered to be a housekeeping gene for genomics and 

proteomics assays, but these results indicate that GAPDH is not an appropriate reference 

gene for CeO2-ENM toxicity assays. In addition, there is mounting evidence that GAPDH 

has multiple roles in the cell in addition to metabolism (Chuang et al., 2005), and 

decreases in GAPDH could reflect changes to these other biochemical pathways. GDH-1 

is a mitochondrial enzyme that is important in the urea cycle, and GDH-1 creates a link 

between amino acid and carbohydrate metabolism in eukaryotic cells, including the 

nematode. It could indicate an increase in amino acid catabolism for energy production 

since it produces α-ketoglutarate, which can be used in the citric acid cycle to produce 

ATP.   GDH-1 has been previously shown to be down-regulated in Daphnia after 

exposure to ZnO nanoparticles (Poynton et al., 2011).  

Exposure of C. elegans to DEAE-CeO2 decreased the expression of probable 

serine-tRNA synthetase (SARS-1) and increased the expression of putative 

aminopeptidase (LAP-2), indicating an impact of DEAE-CeO2 on protein synthesis and 

degradation. LAP-2 is a cytosolic leucine aminopeptidase that degrades amines by 

catalyzing the hydrolysis of leucine residues at the N-terminus of proteins. The sequence 

of LAP-2 overlaps with LAP-1, which has been linked to digestive processes in C. 

elegans (Joshua, 2001). Increased expression of LAP-2 in C. elegans suggests that 
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DEAE-CeO2 exposure might increase proteolytic activity in the C. elegans gut. Leucine 

aminopeptidase also belongs to the M17 family of metallopeptidases (Himmelhoch, 

1969; Joshua, 2001), and increased expression of LAP-2 could point to increased 

metallo-enzymatic activity after exposure of C. elegans to DEAE-CeO2.   

 

Take together, it appears as though alteration in digestion and metabolism may be a 

major mechanism of DEAE-CeO2 toxicity.  This could be the result of the particles 

accumulating on the intestinal epitheium causing damage.  This would result in decreased 

nutrient assimilation effeciency and/or starvation as evidenced by a shift from glycolysis 

to oxidative phosphorylation and shift away from amino acid synthesis to proteolysis. 

 

4.2 Proteomic responses associated with anionic CeO2-ENM toxicity 

Exposure of C. elegans to anionic CM-CeO2 resulted in changes to two proteins 

(increase in ENOL-1 and decrease in LAP-2) that paralleled changes induced by DEAE-

CeO2. This indicates the potential for some similarity regarding mechanisms of toxicity 

between positively and negatively charged CeO2-ENM particle types. Specifically, CM-

CeO2 and DEAE-CeO2 might both have an impact on digestive processes, suggesting 

damage to the intestines.  

While these similarities exist, there were also differences in the protein expression 

patterns.  Exposure of C. elegans to anionic CM-CeO2 resulted in a down-regulation of 

SAMS-1, and this is unique to the CM-CeO2 treatment. SAMS-1 is a universal methyl 

donor for methyltransferase reactions that are important for lipid metabolism, and SAMS-

1 is important for methylation of DNA, RNA, and protein (Li et al., 2011). SAMS-1 was 
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downregulated in CM-CeO2 nematodes, and this could result in increased lipid droplet 

size in C. elegans (Li et al., 2011). SAMS-1 is also involved in one carbon metabolism, 

where nutrients from diverse sources (glucose, serine, threonine, methionine, and 

choline) are integrated to produce energy for various biological functions (Mentch and 

Locasale, 2016). Decreased expression of SAMS-1 could indicate that CM-CeO2 disrupts 

digestive processes in the nematode. Downregulation of SAMS-1 could also result in 

changes to methylation patterns of the nematode epigenome. A recent study indicated 

that unlike mammals, which methylate cytosine, C. elegans methylates adenine (Greer et 

al., 2015). We recently conducted a multi-generational study of Ag nanoparticle toxicity 

in C. elegans that showed increased reproductive sensitivity in 2
nd

 generation that 

persisted over eight generations suggesting strong evidence for epimutations (Schultz et 

al., 2016).  In addition, decreased expression of UNC-15, a paramyosin homolog 

(Kagawa and Genyo, 1989), indicates that CM-CeO2 exposure might disrupt the 

organization of muscle in the nematode body wall.  

 

4.3 Mechanisms of neutral CeO2-ENM toxicity 

Protein expression profiles from nematodes treated with DEX-CeO2 indicated a 

unique toxicity pathway for DEX-CeO2 compared with CM- and DEAE-CeO2. Both 

TKT-1 and PDBH-1 are thiamine dependent enzymes that require thiamine 

pyrophosphate (TPP) as cofactors for functional biological activity, and their expression 

was decreased in nematodes exposed to DEX-CeO2. TKT-1 links the pentose phosphate 

pathway with glycolysis by channeling sugar phosphates to glycolysis (Coy et al., 1996) 

and PDHB-1 links glycolysis in the cytoplasm with oxidative phosphorylation in the 
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mitochondrion (Stacpoole, 2012). Cerium oxide has been shown to oxidize thiamine in 

acidic environments (Byadagi et al., 2010), and oxidized thiamine derivatives can interact 

with cell machinery and affect various cellular processes and metabolism (Parkhomenko 

et al., 1999). It is possible that our results indicate a disruption of metabolic processes in 

C. elegans that are linked with thiamine metabolism and oxidized thiamine derivatives.  

Decreased expression of ALH-1 and EEF-2 was observed in nematodes exposed 

to DEX-CeO2. ALH-1 is a mitochondrial protein that oxidizes aldehydes to carboxylic 

acids for aldehyde metabolism, and this activity is part of the biological detoxification 

process (Vasiliou et al., 2000). EEF-2 is important in the elongation phase of protein 

synthesis, and it is required for embryogenesis and vulval morphogenesis (Wong et al., 

2016). Protein synthesis is energetically costly, and reductions to protein synthesis and 

metabolic activity have been linked with increased lifespan and stress resistance due to 

decrease in toxic metabolic byproducts and increased energy savings that can be re-

allocated to cellular maintenance and repair (Hansen et al., 2007).  In addition, many of 

the proteins that were down-regulated in DEX-CeO2 treatments (TKT-1, EEF-2, HSP70) 

have roles in synthesis and maintenance of lipid droplets that can increase and decrease 

fat accumulation for energy storage (Vrablik et al., 2015). 

DEX-CeO2 also reduced expression of two structure-related proteins with roles in 

thick and heavy chain filaments (UNC-15) and light chain filaments (MLC-3), indicating 

that DEX-CeO2 might disrupt cytoskeletal and muscle filament organization (Ben-Zvi et 

al., 2009). UNC-15 was also down-regulated in CM-CeO2 treatments, indicating that both 

DEX- and CM-CeO2 might induce toxicity by mechanisms that alter cellular structure.  
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 A decrease in the expression of proteins that are important for the stress response 

was observed in C. elegans exposed to DEX-CeO2. Expression of Cu/Zn superoxide 

dismutase (SOD1) protein was decreased in DEX-CeO2 treatments, and expression of 

two proteins from the HSP70 family (HSP70A predicted from hsp-1 gene and HSP70f 

predicted from hsp-6 gene)(Heschl and Baillie, 1990) were decreased by DEX-CeO2 

treatments. Oxidative stress typically induces the expression of antioxidant and heat 

shock genes (Park et al., 2009) and proteins (Gupta et al., 2007), and the reduced 

expression of SOD1, HSP70a and HSP70f suggests that oxidative stress does not play a 

large role in the stress response of C. elegans to DEX-CeO2. HSP70f is a protein importer 

localized to the mitochondria involved in mitochondrial biosynthesis and regulation of 

lifespan (Kimura et al., 2007).  It is a homologue of human mortalin (mthsp70), which 

has been shown to reduce accumulation of ROS when overexpressed in PC12 cells (Liu 

et al., 2005).   Furthermore, DEX-CeO2 has been shown to act as a radical scavenger and 

antioxidant in other biological systems (Alili et al., 2011; Perez et al., 2008), and these 

results support the antioxidant nature of this particle type.  

 

4.4 Oxidative damage to proteins by CeO2-ENMs 

Exposure of nematodes to CM-CeO2 resulted in oxidative damage to the largest 

number of proteins (eight proteins) compared to DEAE- (no proteins) and DEX-CeO2 

(one protein). Increased 3NT residues, indicative of nitrosative damage, were found on 

CRT-1, ASP-5, PMT-2, AHCY-1, LEC-6, and NDK-1. Interestingly, two of these 

proteins are expressed in the nematode intestine (ASP-5 and LEC-6), and two of these 

proteins are involved in one carbon metabolism (PMT-2 and AHCY-1) (Martin et al., 
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2011). Taken together, these data indicate that CM-CeO2 could oxidize proteins in the 

intestine and subsequently influence digestive processes and metabolic pathways.  

Only one protein, ACT-5, exhibited nitrosative damage after exposure to CeO2-

DEX. ACT-5 function is essential for the morphogenesis of intestinal microvilli 

(MacQueen et al., 2005), and it is possible that DEX-CeO2 perturbs microvilli 

development in the nematode gut by formation of 3NT residues on ACT-5. Interestingly, 

in our previous study, the exposure of C. elegans to gold nanoparticles resulted in the up-

regulation of the act-5 gene, and these particles were also detected with TEM in the 

microvilli (Tsyusko et al., 2012).    

Slot blot proteomics methods indicated no significant changes to global measures 

of oxidative stress. Although 2D-PAGE data indicate significant increases in protein 

carbonyls and 3NT oxidative measures, the lack of changes to global measures of 

oxidative stress suggests that other mechanisms of toxicity are also likely to be important 

in ceria nanomaterial toxicity. 

 

4.5 conclusions 

In summary, CeO2-ENMs induced toxicity to C. elegans, and the level and 

mechanism of toxicity depended upon the surface charge of the particles. DEAE-CeO2 

was more toxic, but similarities in protein expression between DEAE- and CM-CeO2 

indicate similar mechanisms of toxicity for these particle types. The protein expression 

data showed that DEX-CeO2 toxicity does not act solely by oxidative mechanisms, and 

that DEX-CeO2 could disrupt fat and thiamine metabolism. According to protein 

expression and redox proteomics results, oxidative stress appears to be a more significant 
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player in CM-CeO2 toxicity. CM-CeO2 exposure also induced changes to protein 

expression and protein oxidative state of a number of proteins that play a role in one 

carbon metabolism. DEAE-CeO2 exposure indicated changes to lysosomal activity and 

energy production.  In addition, several proteins that exhibited altered expression across 

all the treatments were expressed primarily in the nematode gut, indicating that the gut is 

an important target that should be considered for CeO2-ENM toxicity.  

We previously hypothesized that toxicity of these materials in C. elegans was 

mediated through oxidation of macromolecules coupled with reduction of Ce in the CeO2 

structure from Ce IV to Ce III based X-ray absorption near edge spectroscopy 

(XANES)(Collin et al., 2014b).  Furthermore, we hypothesized that differences in 

toxicity between coatings of different charge were primarily due to differences in the 

uptake and bioaccumulation of the particles, where the greatest bioaccumulation and 

toxicity occurred with positively charged particles.  Studies using other positively 

charged coatings in C. elegans (HMT) also showed greatly enhanced toxicity in 

comparison to bare or negatively charged citrate coatings(Roh et al., 2010; Zhang et al., 

2011).  However, the data presented here, using the same materials and exposure scenario 

failed to provide convincing evidence that extensive oxidation of proteins occurred. It 

appears that the mechanism of nanoceria toxicity in C. elegans cannot be fully explained 

by oxidative stress mechanisms. While the preponderance of nanoceria toxicity research 

has focused on the oxidative stress mechanism, future studies should also consider 

alternative mechanisms of toxicity and the role of CeO2 surface chemistry in those 

mechanisms.  We provide evidence here that these materials may cause toxicity through a 
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number of different mechansims other than oxidative stress and they are highly 

dependent upon material surface chemistry. 
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Tables 

Table 1. PD Quest and MS/MS results of C. elegans with significantly altered 

protein expression in treatments compared to controls. 

Treatment Spot ID Protein Accession # MW pI Score % 

Coverage 

p-

value 

Fold 

Chan

ge 

DEX-CeO2 2003 Myosin light chain 3 (MLC-3) F09F7.2a 17.1 4.7 24 38 0.035 -2.44 

DEX-CeO2 3327 Pyruvate dehydrogenase (PDHB-1) C04C3.3 38.1 6.01 51 24 0.005 -1.67 

DEX-CeO2 5105 Superoxide dismutase (SOD-1) C15F1.7b 16.2 6.64 32 61 0.05 -1.56 

DEX-CeO2 6707 Transketolase (TKT-1) F01G10.1 66 6.64 40 26 0.021 -1.61 

DEX-CeO2 4107 Peroxireductase (PRDX-1) F09E5.15a 21.8 5.83 69 46 0.029 -1.89 

DEX-CeO2 4602 Aldehyde Dehydrogenase (ALH-12) Y69F12A.2A 53.2 5.44 87.76 37.47 0.09 -2.13 

DEX-CeO2 4705 Heat Shock 70 kDa protein 1 (HSP70.1) F26D10.3 69.7 5.64 154 48 0.002 -2.63 

DEX-CeO2 4710 Heat Shock 70 kDa protein 6 (HSP70.6) C37H5.8 70.8 6.2 120 35 0.003 -2.78 

DEX-CeO2 6820 Elongation Factor 2 (EEF-2) F25H5.4b 93.3 6.6 71.5 25 0.02 -2.13 

DEX-CeO2 4805 Parmyosin (UNC-15) F07A5.7a 111.2 5.59 24 12.5 0.025 -2.94 

CM-CeO2 5516 Probable S-adenosylmethionene 

synthase (SAMS-1) 

C49F5.1 43.6 6.48 43 28 0.007 -1.64 

CM-CeO2 4509 Enolase 1 (ENOL-1) T21B10.2a 46.6 5.86 65 41 0.02 1.97 

CM-CeO2 4805 Paramyosin (UNC-15) F07A5.7a 111.2 5.59 24 12.5 0.001 -333 

CM-CeO2 7601 Putative aminopeptidase (LAP-2) W07G4.4 56.1 7.05 40 23 0.02 1.79 

DEAE-CeO2 7408 Glyceraldehyde 3 phosphate 

dehydrogenase (GAPDH) 

K10B3.7 36.4 7.27 77 45 0.005 -1.45 

DEAE-CeO2 3610 V-type proton ATPase (VHA-12) F20B6.2 54.7 5.48 98 45 0.038 1.61 

DEAE-CeO2 4509 Enolase 1 (ENOL-1) T21B10.2a 46.6 5.86 65 41 0.012 2.23 

DEAE-CeO2 5617 Probable serine tRNA lidase (SARS-1) C47E12.1 55.2 6.32 53 16 0.028 -2.04 

DEAE-CeO2 6612 Glutamate dehydrogenase (GDH-1) ZK829.4 56.1 7.31 103 23 0.017 -1.47 

DEAE-CeO2 7601 Putative aminopeptidase (LAP-2) W07G4.4 56.1 7.05 40 23 0.042 2.11 
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Table 2: PDQuest and MS/MS results of C. elegans with significantly altered 

oxidative modifications  (protein carbonyls, 3NT, HNE) compared to controls.  

Treatment Oxidative 

Mark 

Spot ID Protein Accession # MW pI Score Coverage p-value Fold 

DEX-CeO2 3NT 4504 Actin 5 (ACT-5) T25C8.2 41.8 5.68 86 43 0.03 28 

CM-CeO2 3NT 2601 Calreticulin (CRT-1) Y38A10A.5 45.6 4.7 30 24 0.023 26 

CM-CeO2 3NT 3301 Aspartic protease 5 (ASP-5) F21F8.3 42 6.06 51 14 0.007 9.86 

CM-CeO2 3NT 5502 Phosphoethanolamine N-

methyltransferase (PMT-2) 

F54D11.1 49.7 5.92 80 27 0.037 4.7 

CM-CeO2 3NT 5606 Adenosylhomocysteinase (AHCY-1) K02F2.2 47.5 6.25 42 28 0.046 11.51 

CM-CeO2 3NT 6102 Galectin (LEC-6) Y55B1AR.1 16 6.68 10.51 15.75 0.029 18.7 

CM-CeO2 3NT 7103 Nucleoside diphosphate kinase (NDK-1) F25H2.5 17.1 7.5 13 26 0.034 25.7 

CM-CeO2 Protein 

carbonyl 

4301 ATP synthase beta (ATP-2) C34E10.6 57.5 5.77 122 51 0.04 -33.3 

CM-CeO2 Protein 

carbonyl 

6208 Glyceraldehyde 3 phosphate 

dehydrogenase (GAPDH) 

K10B3.7 36.4 7.27 48 21 0.005 -9 
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LEGEND 

Table 1 

PD Quest and MS/MS results of C. elegans with significantly altered protein expression 

in treatments compared to controls. Column 1 indicates the CeO2 treatment associated 

with the sample; columns 2, 3, 4, 5, and 6 indicate spot ID, protein name, accession 

number, molecular weight (MW), isoelectric point (pI); column 7 and 8 indicate score 

and coverage of the identified protein, determined from MS-MS; and column 9 and 10 

show the p-value and fold change of the associated proteins compared to control proteins, 

determined by analysis in PDQuest.  

Table 2 

PD Quest and MS/MS results of C. elegans with significantly altered 

oxidative/nitrosative marks in treatments compared to controls. Column 1 and 2 indicate 

CeO2 treatment associated with the sample and the oxidative mark (protein carbonyl, 

3NT, HNE) under investigation; columns 3, 4, 5, 6, and 7 indicate spot ID, protein name, 

accession number, molecular weight (MW), and isoelectric point (pI); columns 8 and 9 

indicate score and coverage of the identified protein, determined from MS-MS; and 

columns 10 and 11 indicate the p-value and fold change of the associated protein 

compared to the control protein, determined by analysis in PDQuest.  

Figure 1 

Reproductive output of C. elegans calculated as total number of offspring per nematode 

after 48 hour exposure to DEX-CeO2, CM-CeO2, and DEAE-CeO2. Asterisks indicate 
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reproduction is significantly different from controls (*p<0.05, **p<0.01, error bars 

indicate standard deviation). 

Figure 2 

Two-dimensional protein maps showing C. elegans protein expression after exposure to 

a) control, b) DEX-CeO2, c) CM-CeO2, and d) DEAE-CeO2. Proteins were horizontally 

separated by isoelectric point from pH range 3 to 10, and vertically separated by 

molecular weight from 10 to 250 kDa. Marked proteins show a significant difference in 

spot density compared to control protein spot density. All significant spots are 

highlighted on the control gel.  Spots are significant when p < 0.05. 

Figure 3 

Western blots of two dimensional protein gels from nematodes exposed to a) control, b) 

DEX-CeO2, and c) CM-CeO2, developed for the 3-nitrotyrosine (3NT) oxidative marker.  

Marked proteins exhibited significant changes in 3NT expression in the PDQuest 

program are highlighted on relevant blots. All significant spots are highlighted on the 

control blot. Spots are significant when p < 0.05. 
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Figure 2.5. Caenorhabditis elegans reproduction based on total offspring per nematode 

 exposed to dextran (DEX), carboxymethyl-dextran (CM), or 

 diethylaminoethyl-dextran (DEAE) coated CeO2 manufactured 

 nanomaterials. Asterisks indicate that reproduction is significantly different 

 from controls (*p<0.05, **p<0.01, error bars from standard deviation). 
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