140 research outputs found
MHD Simulation of the Inner-Heliospheric Magnetic Field
Maps of the radial magnetic field at a heliocentric distance of ten solar
radii are used as boundary conditions in the MHD code CRONOS to simulate a 3D
inner-heliospheric solar wind emanating from the rotating Sun out to 1 AU. The
input data for the magnetic field are the result of solar surface flux
transport modelling using observational data of sunspot groups coupled with a
current sheet source surface model. Amongst several advancements, this allows
for higher angular resolution than that of comparable observational data from
synoptic magnetograms. The required initial conditions for the other MHD
quantities are obtained following an empirical approach using an inverse
relation between flux tube expansion and radial solar wind speed. The
computations are performed for representative solar minimum and maximum
conditions, and the corresponding state of the solar wind up to the Earths
orbit is obtained. After a successful comparison of the latter with
observational data, they can be used to drive outer-heliospheric models.Comment: for associated wmv movie files accompanying Figure 7, see
http://www.tp4.rub.de/~tow/max.wmv and http://www.tp4.rub.de/~tow/min.wm
A novel code for numerical 3-D MHD studies of CME expansion
A recent third-order, essentially non-oscillatory central scheme to advance the equations of single-fluid magnetohydrodynamics (MHD) in time has been implemented into a new numerical code. This code operates on a 3-D Cartesian, non-staggered grid, and is able to handle shock-like gradients without producing spurious oscillations. <br><br> To demonstrate the suitability of our code for the simulation of coronal mass ejections (CMEs) and similar heliospheric transients, we present selected results from test cases and perform studies of the solar wind expansion during phases of minimum solar activity. We can demonstrate convergence of the system into a stable Parker-like steady state for both hydrodynamic and MHD winds. The model is subsequently applied to expansion studies of CME-like plasma bubbles, and their evolution is monitored until a stationary state similar to the initial one is achieved. In spite of the model's (current) simplicity, we can confirm the CME's nearly self-similar evolution close to the Sun, thus highlighting the importance of detailed modelling especially at small heliospheric radii. <br><br> Additionally, alternative methods to implement boundary conditions at the coronal base, as well as strategies to ensure a solenoidal magnetic field, are discussed and evaluated
A Generalized Diffusion Tensor for Fully Anisotropic Diffusion of Energetic Particles in the Heliospheric Magnetic Field
The spatial diffusion of cosmic rays in turbulent magnetic fields can, in the
most general case, be fully anisotropic, i.e. one has to distinguish three
diffusion axes in a local, field-aligned frame. We reexamine the transformation
for the diffusion tensor from this local to a global frame, in which the Parker
transport equation for energetic particles is usually formulated and solved.
Particularly, we generalize the transformation formulas to allow for an
explicit choice of two principal local perpendicular diffusion axes. This
generalization includes the 'traditional' diffusion tensor in the special case
of isotropic perpendicular diffusion. For the local frame, we motivate the
choice of the Frenet-Serret trihedron which is related to the intrinsic
magnetic field geometry. We directly compare the old and the new tensor
elements for two heliospheric magnetic field configurations, namely the hybrid
Fisk and the Parker field. Subsequently, we examine the significance of the
different formulations for the diffusion tensor in a standard 3D model for the
modulation of galactic protons. For this we utilize a numerical code to
evaluate a system of stochastic differential equations equivalent to the Parker
transport equation and present the resulting modulated spectra. The computed
differential fluxes based on the new tensor formulation deviate from those
obtained with the 'traditional' one (only valid for isotropic perpendicular
diffusion) by up to 60% for energies below a few hundred MeV depending on
heliocentric distance.Comment: 8 pages, 6 figures, accepted in Ap
Status quo: Levels of Campylobacter spp. and hygiene indicators in German slaughterhouses for broiler and turkey
Poultry is a common reservoir for Campylobacter and a main source for human campylobacteriosis. With broiler being the predominant poultry for food production, most food safety related research is conducted for this species, for turkey, few studies are available. Although animals are typically colonized at the farm level, the slaughtering process is considered an important factor in re- and cross-contamination. We examined the development of Campylobacter, E. coli and total colony counts (TCC) after several processing steps in three broiler and one turkey slaughterhouses. Whole carcass rinsing and neck skin sampling was applied for broilers resulting in 486 samples in total, while 126 neck skin samples were collected for turkeys. A decrease in the loads of the different bacterial groups along the broiler slaughtering process was observed. Campylobacter mean counts dropped from 4.5 ± 1.7 log10 CFU/ml after killing to 1.6 ± 0.4 log10 CFU/ml after chilling. However, an increase in Campylobacter counts was evident after evisceration before the values again decreased by the final processing step. Although the Campylobacter prevalence in the turkey samples showed a similar development, the bacterial loads were much lower with 1.7 ± 0.3 log10 CFU/g after killing and 1.7 ± 0.4 log10 CFU/g after chilling compared to those of broilers. The loads of E. coli and total colony count of turkey were higher after killing, were reduced by scalding and remained stable until after chilling.
This study highlights trends during the slaughtering process in reducing the levels of Campylobacter, E. coli, and total colony counts for broiler and turkey carcasses, from the initial step to after chilling. These results contribute to our understanding of microbial dynamics during meat processing
Control of spin in quantum dots with non-Fermi liquid correlations
Spin effects in the transport properties of a quantum dot with spin-charge
separation are investigated. It is found that the non-linear transport spectra
are dominated by spin dynamics. Strong spin polarization effects are observed
in a magnetic field. They can be controlled by varying gate and bias voltages.
Complete polarization is stable against interactions. When polarization is not
complete, it is power-law enhanced by non-Fermi liquid effects.Comment: 4 pages, 4 figure
A generalized two-component model of solar wind turbulence and ab initio diffusion mean-free paths and drift lengthscales of cosmic rays
We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results from the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind
Skymaps of observables of three-dimensional MHD astrosphere models
Three-dimensional models of astrospheres have recently become of interest.
However, comparisons between these models and observations are non-trivial
because of the two-dimensional nature of observations. By projecting selected
physical values of three-dimensional models of astrospheres onto the surface of
a sphere that is centred on a virtual all-sky observer, these models can be
compared to observational data in different observables: the column density,
bremsstrahlung flux, rotation measure, H flux, and synchrotron or
cyclotron flux. Projections were calculated by rotating and moving the
astrosphere model to the desired position and orientation and by then computing
the value of a given patch on the sphere by a modified line-of-sight
integration. Contributions to the selected observable made by all model cells
that are connected to the patch by the line of sight in question were taken
into account. When the model produces a bow shock, a distinct parabolic
structure produced by the outer astrosheath can be seen in every observable of
the projection, the exact shape depending on the orientations of the line of
sight and the stellar motion. Of all four examined astrosphere models, only
that of Cephei shows fluxes that are higher than current
observational thresholds. This is due to the strong stellar wind and
interstellar inflow of the Cephei model
- …