97 research outputs found
Haseman-Elston weighted by marker informativity
In the Haseman-Elston approach the squared phenotypic difference is regressed on the proportion of alleles shared identical by descent (IBD) to map a quantitative trait to a genetic marker. In applications the IBD distribution is estimated and usually cannot be determined uniquely owing to incomplete marker information. At Genetic Analysis Workshop (GAW) 13, Jacobs et al. [BMC Genet 2003, 4(Suppl 1):S82] proposed to improve the power of the Haseman-Elston algorithm by weighting for information available from marker genotypes. The authors did not show, however, the validity of the employed asymptotic distribution. In this paper, we use the simulated data provided for GAW 14 and show that weighting Haseman-Elston by marker information results in increased type I error rates. Specifically, we demonstrate that the number of significant findings throughout the chromosome is significantly increased with weighting schemes. Furthermore, we show that the classical Haseman-Elston method keeps its nominal significance level when applied to the same data. We therefore recommend to use Haseman-Elston with marker informativity weights only in conjunction with empirical p-values. Whether this approach in fact yields an increase in power needs to be investigated further
Haplotype-sharing analysis for alcohol dependence based on quantitative traits and the Mantel statistic
Haplotype-based methods have become increasingly popular in the last decade because shared lengths in haplotypes can be used for disease localization. In this contribution, we propose a novel linkage-based haplotype-sharing approach for quantitative traits based on the class of Mantel statistics which is closely related to the weighted pair-wise correlation statistic. Because these statistics are known to be liberal, we propose a permutation test to evaluate significance. We applied the Mantel statistic to the autosomal data from the genome-wide scan of the Collaborative Study on the Genetics of Alcoholism with the Affymetrix Genotype 10 K array that was provided for the Genetic Analysis Workshop 14. Four regions on chromosome 4, 8, 16, and 20 showed p-values less than 0.005 with a minimum p-value of < 0.0001 on chromosome 16 (tsc0520638 at 72.8 cM). Three of these four regions located on chromosome 4, 16, and 20 have been reported previously in the Genetic Analysis Workshop 11
Two new approaches to improve the analysis of BALB/c 3T3 cell transformation assay data
Validation activities of the BALB/c 3T3 cell transformation assay (CTA) – a test method used for the assessment of the carcinogenic potential of compounds – have revealed the need for statistical analysis tailored to specific features of BALB/c 3T3 CTA data. Whereas a standard statistical approach for the Syrian hamster embryo (SHE) CTA was considered sufficient, an international expert group was gathered by the European Centre for the Validation of Alternative Methods (ECVAM) to review commonly applied statistical approaches for BALB/c 3T3 CTA. As it was concluded that none of the commonly applied approaches is entirely appropriate, two novel statistical approaches were found to be recommended for the evaluation of BALB/c 3T3 CTA data accounting for possible non-monotone concentration–response relationship and variance heterogeneity: a negative binomial generalised linear model with William's-type downturn-protected trend tests and a normalisation of the data by a specific transformation allowing for application of a general linear model that estimates effects assuming a normal distribution with William's-type protected tests. Both approaches are described in this article and their performance and the quality of the results they generate is demonstrated using exemplary data. Our work confirmed that both approaches are suitable for the statistical analysis of BALB/c 3T3 CTA data and that each of them is superior to commonly used methods. Furthermore, a procedure dichotomising data into negatives and positives is proposed which allows re-testing in cases where inconclusive data are encountered. The scripts of the statistical evaluation programs written in R – a freely available statistical software – are appended including exemplary outputs
Parameter Estimation and Quantitative Parametric Linkage Analysis with GENEHUNTER-QMOD
Objective: We present a parametric method for linkage analysis of quantitative phenotypes. The method provides a test for linkage as well as an estimate of different phenotype parameters. We have implemented our new method in the program GENEHUNTER-QMOD and evaluated its properties by performing simulations. Methods: The phenotype is modeled as a normally distributed variable, with a separate distribution for each genotype. Parameter estimates are obtained by maximizing the LOD score over the normal distribution parameters with a gradient-based optimization called PGRAD method. Results: The PGRAD method has lower power to detect linkage than the variance components analysis (VCA) in case of a normal distribution and small pedigrees. However, it outperforms the VCA and Haseman-Elston regression for extended pedigrees, nonrandomly ascertained data and non-normally distributed phenotypes. Here, the higher power even goes along with conservativeness, while the VCA has an inflated type I error. Parameter estimation tends to underestimate residual variances but performs better for expectation values of the phenotype distributions. Conclusion: With GENEHUNTER-QMOD, a powerful new tool is provided to explicitly model quantitative phenotypes in the context of linkage analysis. It is freely available at http://www.helmholtz-muenchen.de/genepi/downloads. Copyright (C) 2012 S. Karger AG, Base
Weighted Gene Correlation Network Analysis (WGCNA) Reveals Novel Transcription Factors Associated With Bisphenol A Dose-Response
Despite Bisphenol-A (BPA) being subject to extensive study, a thorough understanding of molecular mechanism remains elusive. Here we show that using weighted gene correlation network analysis (WGCNA), which takes advantage of a graph theoretical approach to understanding correlations amongst genes and grouping genes into modules that typically have co-ordinated biological functions and regulatory mechanisms, that despite some commonality in altered genes, there is minimal overlap between BPA and estrogen in terms of network topology. We confirmed previous findings that ZNF217 and TFAP2C are involved in the estrogen pathway, and are implicated in BPA as well, although for BPA they appear to be active in the absence of canonical estrogen-receptor driven gene expression. Furthermore, our study suggested that PADI4 and RACK7/ZMYNDB8 may be involved in the overlap in gene expression between estradiol and BPA. Lastly, we demonstrated that even at low doses there are unique transcription factors that appear to be driving the biology of BPA, such as SREBF1. Overall, our data is consistent with other reports that BPA leads to subtle gene changes rather than profound aberrations of a conserved estrogen signaling (or other) pathways
Genome-Wide Linkage Analysis of Malaria Infection Intensity and Mild Disease
Although balancing selection with the sickle-cell trait and other red blood cell disorders has emphasized the interaction between malaria and human genetics, no systematic approach has so far been undertaken towards a comprehensive search for human genome variants influencing malaria. By screening 2,551 families in rural Ghana, West Africa, 108 nuclear families were identified who were exposed to hyperendemic malaria transmission and were homozygous wild-type for the established malaria resistance factors of hemoglobin (Hb)S, HbC, alpha(+) thalassemia, and glucose-6-phosphate-dehydrogenase deficiency. Of these families, 392 siblings aged 0.5–11 y were characterized for malaria susceptibility by closely monitoring parasite counts, malaria fever episodes, and anemia over 8 mo. An autosome-wide linkage analysis based on 10,000 single-nucleotide polymorphisms was conducted in 68 selected families including 241 siblings forming 330 sib pairs. Several regions were identified which showed evidence for linkage to the parasitological and clinical phenotypes studied, among them a prominent signal on Chromosome 10p15 obtained with malaria fever episodes (asymptotic z score = 4.37, empirical p-value = 4.0 × 10(−5), locus-specific heritability of 37.7%; 95% confidence interval, 15.7%–59.7%). The identification of genetic variants underlying the linkage signals may reveal as yet unrecognized pathways influencing human resistance to malaria
Toward Good Read-Across Practice (GRAP) guidance.
Grouping of substances and utilizing read-across of data within those groups represents an important data gap filling technique for chemical safety assessments. Categories/analogue groups are typically developed based on structural similarity and, increasingly often, also on mechanistic (biological) similarity. While read-across can play a key role in complying with legislations such as the European REACH regulation, the lack of consensus regarding the extent and type of evidence necessary to support it often hampers its successful application and acceptance by regulatory authorities. Despite a potentially broad user community, expertise is still concentrated across a handful of organizations and individuals. In order to facilitate the effective use of read-across, this document aims to summarize the state-of-the-art, summarizes insights learned from reviewing ECHA published decisions as far as the relative successes/pitfalls surrounding read-across under REACH and compile the relevant activities and guidance documents. Special emphasis is given to the available existing tools and approaches, an analysis of ECHA's published final decisions associated with all levels of compliance checks and testing proposals, the consideration and expression of uncertainty, the use of biological support data and the impact of the ECHA Read-Across Assessment Framework (RAAF) published in 2015
t4 Workshop Report: Integrated Testing Strategies (ITS) for Safety Assessment
Integrated testing strategies (ITS), as opposed to single definitive tests or fixed batteries of tests, are expected to efficiently combine different information sources in a quantifiable fashion to satisfy an information need, in this case for regulatory safety assessments. With increasing awareness of the limitations of each individual tool and the development of highly targeted tests and predictions, the need for combining pieces of evidence increases. The discussions that took place during this workshop, which brought together a group of experts coming from different related areas, illustrate the current state of the art of ITS, as well as promising developments and identifiable challenges. The case of skin sensitization was taken as an example to understand how possible ITS can be constructed, optimized and validated. This will require embracing and developing new concepts such as adverse outcome pathways (AOP), advanced statistical learning algorithms and machine learning, mechanistic validation and “Good ITS Practices”.JRC.I.5-Systems Toxicolog
OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing
The OECD validation study of the zebrafish embryo acute toxicity test (ZFET) for acute aquatic toxicity testing evaluated the ZFET reproducibility by testing 20 chemicals at 5 different concentrations in 3 independent runs in at least 3 laboratories. Stock solutions and test concentrations were analytically confirmed for 11 chemicals. Newly fertilised zebrafish eggs (20/concentration and control) were exposed for 96 h to chemicals. Four apical endpoints were recorded daily as indicators of acute lethality: coagulation of the embryo, lack of somite formation, non-detachment of the tail bud from the yolk sac and lack of heartbeat. Results (LC50 values for 48/96 h exposure) show that the ZFET is a robust method with a good intra- and inter-laboratory reproducibility (CV 30%) for some very toxic or volatile chemicals, and chemicals tested close to their limit of solubility. The ZFET is now available as OECD Test Guideline 236. Considering the high predictive capacity of the ZFET demonstrated by Belanger et al. (2013) in their retrospective analysis of acute fish toxicity and fish embryo acute toxicity data, the ZFET is ready to be
considered for acute fish toxicity for regulatory purposes
- …