18 research outputs found

    Reliability of quantitative multiparameter maps is high for magnetization transfer and proton density but attenuated for R1 and R2* in healthy young adults

    Get PDF
    We investigate the reliability of individual differences of four quantities measured by magnetic resonance imaging-based multiparameter mapping (MPM): magnetization transfer saturation (MT), proton density (PD), longitudinal relaxation rate (R1 ), and effective transverse relaxation rate (R2 *). Four MPM datasets, two on each of two consecutive days, were acquired in healthy young adults. On Day 1, no repositioning occurred and on Day 2, participants were repositioned between MPM datasets. Using intraclass correlation effect decomposition (ICED), we assessed the contributions of session-specific, day-specific, and residual sources of measurement error. For whole-brain gray and white matter, all four MPM parameters showed high reproducibility and high reliability, as indexed by the coefficient of variation (CoV) and the intraclass correlation (ICC). However, MT, PD, R1 , and R2 * differed markedly in the extent to which reliability varied across brain regions. MT and PD showed high reliability in almost all regions. In contrast, R1 and R2 * showed low reliability in some regions outside the basal ganglia, such that the sum of the measurement error estimates in our structural equation model was higher than estimates of between-person differences. In addition, in this sample of healthy young adults, the four MPM parameters showed very little variability over four measurements but differed in how well they could assess between-person differences. We conclude that R1 and R2 * might carry only limited person-specific information in some regions of the brain in healthy young adults, and, by implication, might be of restricted utility for studying associations to between-person differences in behavior in those regions

    Exercise-Induced Fitness Changes Correlate with Changes in Neural Specificity in Older Adults

    Get PDF
    Neural specificity refers to the degree to which neural representations of different stimuli can be distinguished. Evidence suggests that neural specificity, operationally defined as stimulus-related differences in functional magnetic resonance imaging (fMRI) activation patterns, declines with advancing adult age, and that individual differences in neural specificity are associated with individual differences in fluid intelligence. A growing body of literature also suggests that regular physical activity may help preserve cognitive abilities in old age. Based on this literature, we hypothesized that exercise-induced improvements in fitness would be associated with greater neural specificity among older adults. A total of 52 adults aged 59–74 years were randomly assigned to one of two aerobic-fitness training regimens, which differed in intensity. Participants in both groups trained three times a week on stationary bicycles. In the low-intensity (LI) group, the resistance was kept constant at a low level (10 Watts). In the high-intensity (HI) group, the resistance depended on participants’ heart rate and therefore typically increased with increasing fitness. Before and after the 6-month training phase, participants took part in a functional MRI experiment in which they viewed pictures of faces and buildings. We used multivariate pattern analysis (MVPA) to estimate the distinctiveness of neural activation patterns in ventral visual cortex (VVC) evoked by face or building stimuli. Fitness was also assessed before and after training. In line with our hypothesis, traininginduced changes in fitness were positively associated with changes in neural specificity. We conclude that physical activity may protect against age-related declines in neural specificity

    Educational attainment does not influence brain aging.

    Get PDF
    Education has been related to various advantageous lifetime outcomes. Here, using longitudinal structural MRI data (4,422 observations), we tested the influential hypothesis that higher education translates into slower rates of brain aging. Cross-sectionally, education was modestly associated with regional cortical volume. However, despite marked mean atrophy in the cortex and hippocampus, education did not influence rates of change. The results were replicated across two independent samples. Our findings challenge the view that higher education slows brain aging

    Research data management: Where/How/Why?

    No full text

    Changes in fitness are associated with changes in hippocampal microstructure and hippocampal volume among older adults

    No full text
    This study investigates the effects of fitness changes on hippocampal microstructure and hippocampal volume. Fifty-two healthy participants aged 59-74 years with a sedentary lifestyle were randomly assigned to either of two levels of exercise intensity. Training lasted for six months. Physical fitness, hippocampal volumes, and hippocampal microstructure were measured before and after training. Hippocampal microstructure was assessed by mean diffusivity, which inversely reflects tissue densityhence, mean diffusivity is lower for more densely packed tissue. Mean changes in fitness did not differ reliably across intensity levels of training, so data were collapsed across groups. Multivariate modeling of pretest-posttest differences using structural equation modeling (SEM) revealed that individual differences in latent change were reliable for all three constructs. More positive changes in fitness were associated with more positive changes in tissue density (i.e., more negative changes in mean diffusivity), andmore positive changes in tissue density were associated with more positive changes in volume. We conclude that fitness-related changes in hippocampal volume may be brought about by changes in tissue density. The relative contributions of angiogenesis, gliogenesis, and/or neurogenesis to changes in tissue density remain to be identified. (C) 2015 Elsevier Inc. All rights reserved

    Aerobic exercise is associated with region-specific changes in volumetric, tensor-based, and fixel-based measures of white matter integrity in healthy older adults

    Get PDF
    White matter integrity and cognition have been found to decline with advancing adult age. Aerobic exercise may be effective in counteracting these declines. Generally, white matter integrity has been quantified using a volumetric measure (WMV) and with tensor-based parameters, such as fractional anisotropy (FA) and mean diffusivity (MD), the validity of which appears to be compromised in the presence of crossing fibers. Fixel-based analysis techniques claim to overcome this problem by yielding estimates of fiber density (FD), cross-section (FC), and their product (FDC) in multiple directions per voxel. In a sample of 61 healthy older adults (63–76 years old), we quantified changes in white matter integrity following an aerobic exercise intervention with the commonly used volumetric and tensor-based metrics (WMV, FA, MD) and with fixel-based metrics (FD, FC, FDC). We investigated the associations of changes in these white matter parameters with changes in cardiovascular fitness and Digit Symbol Substitution task (DSST) performance, a marker of perceptual speed. In line with previous findings, we observed maintained WMV in the corpus callosum of exercisers, and positive change-change correlations between WMV and fitness, and between WMV and perceptual speed. For FA and MD, group differences in change opposite to those hypothesized were found in the corpus callosum, posterior corona radiata, and superior longitudinal fasciculus at an uncorrected significance threshold. Likewise, regions in superficial WM in the prefrontal cortex showed group differences in FD and FDC change, uncorrected, with more positive change in controls and more negative change in exercisers. Finally, changes in FD and FDC were found to be inversely correlated to changes in fitness and DSST performance. The present results corroborate previous findings of WMV changes, but cast doubt on current physiological interpretations of both tensor-based and fixel-based indicators of white matter properties in the context of exercise intervention studies
    corecore