34 research outputs found

    Reversibility and Improved Hydrogen Release of Magnesium Borohydride

    Get PDF
    Desorption and subsequent rehydrogenation of Mg(BH_4)_2 with and without 5 mol % TiF_3 and ScCl_3 have been investigated. Temperature programmed desorption (TPD) experiments revealed a significant increase in the rate of desorption as well as the weight percentage of hydrogen released with additives upon heating to 300 °C. Stable Mg(B_xH_y)_n intermediates were formed at 300 °C, whereas MgB_2 was the major product when heated to 600 °C. These samples were then rehydrogenated and subsequently characterized with powder X-ray diffraction (pXRD), Raman, and NMR spectroscopy. We confirmed significant conversion of MgB_2 to fully hydrogenated Mg(BH_4)_2 for the sample with and without additives. TPD and NMR studies revealed that the additives have a significant effect on the reaction pathway during both dehydrogenation and rehydrogenation reactions. This work suggests that the use of additives may provide a valid pathway for improving intrinsic hydrogen storage properties of magnesium borohydride

    Analysis of H2 storage needs for early market non-motive fuel cell applications.

    Get PDF
    Hydrogen fuel cells can potentially reduce greenhouse gas emissions and the United States dependence on foreign oil, but issues with hydrogen storage are impeding their widespread use. To help overcome these challenges, this study analyzes opportunities for their near-term deployment in five categories of non-motive equipment: portable power, construction equipment, airport ground support equipment, telecom backup power, and man-portable power and personal electronics. To this end, researchers engaged end users, equipment manufacturers, and technical experts via workshops, interviews, and electronic means, and then compiled these data into meaningful and realistic requirements for hydrogen storage in specific target applications. In addition to developing these requirements, end-user benefits (e.g., low noise and emissions, high efficiency, potentially lower maintenance costs) and concerns (e.g., capital cost, hydrogen availability) of hydrogen fuel cells in these applications were identified. Market data show potential deployments vary with application from hundreds to hundreds of thousands of units

    Efficient Hydrogen Production from Methanol Using a Single-Site Pt1/CeO2 Catalyst.

    Get PDF
    Hydrogen is regarded as an attractive alternative energy carrier due to its high gravimetric energy density and only water production upon combustion. However, due to its low volumetric energy density, there are still some challenges in practical hydrogen storage and transportation. In the past decade, using chemical bonds of liquid organic molecules as hydrogen carriers to generate hydrogen in situ provided a feasible method to potentially solve this problem. Research efforts on liquid organic hydrogen carriers (LOHCs) seek practical carrier systems and advanced catalytic materials that have the potential to reduce costs, increase reaction rate, and provide a more efficient catalytic hydrogen generation/storage process. In this work, we used methanol as a hydrogen carrier to release hydrogen in situ with the single-site Pt1/CeO2 catalyst. Moreover, in this reaction, compared with traditional nanoparticle catalysts, the single site catalyst displays excellent hydrogen generation efficiency, 40 times higher than 2.5 nm Pt/CeO2 sample, and 800 times higher compared to 7.0 nm Pt/CeO2 sample. This in-depth study highlights the benefits of single-site catalysts and paves the way for further rational design of highly efficient catalysts for sustainable energy storage applications

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004

    On the Physical and Combustion Properties of Hydrogen and the Feasibility and Characteristics of Hydrogen Fuel-Cell Vessels [video]

    Get PDF
    NPS Defense Energy SeminarDr. Leonard E. Klebanoff, Principal Scientist, Sandia National LabsThis talk will describe the physical and safety properties of hydrogen fuel, proton-exchange membrane (PEM) fuel cells, and examine the feasibility and characteristics of zero-emission hydrogen fuel-cell vessels. The physical and combustion properties of gaseous and liquid hydrogen will be compared to those of natural gas and liquified natural gas (LNG), which have already started to be used in ferry applications in Scandinavia. PEM fuel cells will be described with their thermal efficiencies compared to diesel engine technology. The feasibility of using hydrogen fuel cells to power a high-speed passenger ferry (nicknamed the SF-BREEZE) will be presented. Recent results for the design and performance of a hydrogen fuel-cell research vessel (named the Zero-V) will also be discussed. The equivalent CO2 and criteria (i.e. smog) pollutant emissions associated with hydrogen fuel production and delivery will be presented, to better understand the “well-to-waves” emissions associated with hydrogen fuel-cell vessel technology

    Final report for the DOE Metal Hydride Center of Excellence.

    No full text
    This report summarizes the R&D activities within the U.S. Department of Energy Metal Hydride Center of Excellence (MHCoE) from March 2005 to June 2010. The purpose of the MHCoE has been to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE 2010 and 2015 system goals for hydrogen storage materials. The MHCoE combines three broad areas: mechanisms and modeling (which provide a theoretically driven basis for pursuing new materials), materials development (in which new materials are synthesized and characterized) and system design and engineering (which allow these new materials to be realized as practical automotive hydrogen storage systems). This Final Report summarizes the organization and execution of the 5-year research program to develop practical hydrogen storage materials for light duty vehicles. Major results from the MHCoE are summarized, along with suggestions for future research areas

    Supplementary Material

    No full text
    Supplementary Material: Understanding electronic structure tunability by metal dopants for promoting MgB2 decomposition during hydrogenation</p
    corecore