11 research outputs found

    Review and Recommendations for Experimentations in Earth Orbit and Beyond

    Get PDF
    The space environment is regularly used for experiments addressing astrobiology research goals. The specific conditions prevailing in Earth orbit and beyond, notably the radiative environment (photons and energetic particles) and the possibility to conduct long-duration measurements, have been the main motivations for developing experimental concepts to expose chemical or biological samples to outer space, or to use the reentry of a spacecraft on Earth to simulate the fall of a meteorite. This paper represents an overview of past and current research in astrobiology conducted in Earth orbit and beyond, with a special focus on ESA missions such as Biopan, STONE (on Russian FOTON capsules) and EXPOSE facilities (outside the International Space Station). The future of exposure platforms is discussed, notably how they can be improved for better science return, and how to incorporate the use of small satellites such as those built in cubesat format

    Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond

    Get PDF

    Earth as a Tool for Astrobiology—A European Perspective

    Get PDF

    RECENT DEVELOPMENT OF A BIOINSPIRED ANTIMICROBIAL SURFACE - A PREVENTIVE TECHNOLOGY FOR EXTENDED STAYS IN CONFINED SPACE ENVIRONMENTS

    Get PDF
    Challenges of space ight in LEO and exploration activities are manyfold. E.g., the more far away from the Earth, the more increased stays in closed systems (e.g. ISS, lunar and Martian habitats) are a common characteristic. This includes increased but very specific microbial loads caused by high humidity and temperature levels and especially based on the group of humans brought to the closed habitat. Furthermore, there is a higher dependency from biological systems (CELSS) being sensitive against unintended microbial contamination, as well as a need of not transferring microorganisms out of spaceships to outer, habitable bodies and vice versa (COSPAR Planetary Protection Policy). Proven technologies on Earth to counteract microbial contamination as biocides are not a suited alternative for space due to inherent problems of potential toxic effects on non-target organisms, unspecifity and resistancies to some microbial groups. Bioinspired technologies as using antimicrobial peptides from nature (e.g. from frog skin etc.), immobilised on surfaces, are a suited alternative. High exibility concerning the microbial target, low toxicity and an absence of resistancies are the main advantages. An overview about goals and first results of a corresponding activity, funded by ESA, will be given at the symposium

    Fundamental of Space Biology : Research on Cells animals and Plants in Space

    No full text
    xviii,375 hal,;ill,;23 c

    Facilities for gravitational physiology

    No full text

    Fundamentals of Space Biology. Research on Cells, Animals, and Plants in Space

    No full text
    This book is intended as an overview at an undergraduate or early university level and describes the effects of spaceflight at cellular and organism levels. Past, current, and future research on the effects of gravity - or its absence - and ionizing radiation on the evolution, development, and function of living organisms is presented in layman's terms by researchers who have been active in this field. The purpose is to enlighten science and non-science readers to the benefits of space biology research for conducting basic and applied research to support human exploration of space and to take advantage of the space environment as a laboratory for scientific, technological, and commercial research. The first chapters present an overview of the major focuses of space research in biology, as well as the history and the list of animals and plants that have flown in space to date. The following chapters describe the main results of space studies in gravitational biology, developmental biology, radiation biology, and biotechnology. A background is given in each chapter, so that a minimum of prior coursework in biology is necessary for full comprehension. Each chapter also includes perspectives for future research and a list of references

    Future space experiment platforms for astrobiology and astrochemistry research

    Get PDF
    Space experiments are a technically challenging but a scientifically important part of astrobiology and astrochemistry research. The International Space Station (ISS) is an excellent example of a highly successful and long-lasting research platform for experiments in space, that has provided a wealth of scientific data over the last two decades. However, future space platforms present new opportunities to conduct experiments with the potential to address key topics in astrobiology and astrochemistry. In this perspective, the European Space Agency (ESA) Topical Team Astrobiology and Astrochemistry (with feedback from the wider scientific community) identifies a number of key topics and summarizes the 2021 “ESA SciSpacE Science Community White Paper” for astrobiology and astrochemistry. We highlight recommendations for the development and implementation of future experiments, discuss types of in situ measurements, experimental parameters, exposure scenarios and orbits, and identify knowledge gaps and how to advance scientific utilization of future space-exposure platforms that are either currently under development or in an advanced planning stage. In addition to the ISS, these platforms include CubeSats and SmallSats, as well as larger platforms such as the Lunar Orbital Gateway. We also provide an outlook for in situ experiments on the Moon and Mars, and welcome new possibilities to support the search for exoplanets and potential biosignatures within and beyond our solar system
    corecore