991 research outputs found

    Understanding Self-Reported Sexual Violence Perpetration: Correlates and Prevention Participation

    Get PDF
    Bystander prevention programs seek to educate individuals on the nature of sexual violence and increase bystander efficacy. This study seeks to evaluate the effectiveness of the Bringing in the Bystander (BITB) prevention program through self-reports of perpetration behaviors as well as risk factors associated with perpetration. The bystander prevention program was implemented on a rural mid-sized public university and first-year students were surveyed three times at separate time points (2 weeks, 5 months, and 12 months) after the program conclusion. Results from a correlational and logistic regression analysis show that endorsement of violent peer norms, rape myth acceptance, and rape proclivity of self were all significant correlates of perpetration. The results also indicated that endorsement of coercive peer norms was a predictor of recent perpetration. There were no significant differences in self-reported recent perpetration between the control and treatment group. However, recent perpetration rates did decrease for the treatment group, which means BITB is on the right track to ending sexual violence on college campuses

    Kantorovich-Rubinstein Distance and Barycenter for Finitely Supported Measures: Foundations and Algorithms

    Get PDF
    The purpose of this paper is to provide a systematic discussion of a generalized barycenter based on a variant of unbalanced optimal transport (UOT) that defines a distance between general non-negative, finitely supported measures by allowing for mass creation and destruction modeled by some cost parameter. They are denoted as Kantorovich–Rubinstein (KR) barycenter and distance. In particular, we detail the influence of the cost parameter to structural properties of the KR barycenter and the KR distance. For the latter we highlight a closed form solution on ultra-metric trees. The support of such KR barycenters of finitely supported measures turns out to be finite in general and its structure to be explicitly specified by the support of the input measures. Additionally, we prove the existence of sparse KR barycenters and discuss potential computational approaches. The performance of the KR barycenter is compared to the OT barycenter on a multitude of synthetic datasets. We also consider barycenters based on the recently introduced Gaussian Hellinger–Kantorovich and Wasserstein–Fisher–Rao distances

    Speech Communication

    Get PDF
    Contains reports on three research projects.U. S. Air Force Cambridge Research Laboratories under Contract F19628-69-C-0044National Institutes of Health (Grant 5 RO1 NS04332-09)M.I.T. Lincoln Laboratory Purchase Order CC-57

    Speech Communication

    Get PDF
    Contains reports on five research projects.National Institutes of Health (Grant 5 RO1 NS04332-12)National Institutes of Health (Grant HD05168-04)U.S. Navy Office of Naval Research (Contract N00014-67-A-0204-0069)Joint Services Electronics Program (Contract DAAB07-74-C-0630)National Science Foundation (Grant SOC74-22167

    Strength of bacterial adhesion on nanostructured surfaces quantified by substrate morphometry

    Get PDF
    Microbial adhesion and the subsequent formation of resilient biofilms at surfaces are decisively influenced by substrate properties, such as the topography. To date, studies that quantitatively link surface topography and bacterial adhesion are scarce, as both are not straightforward to quantify. To fill this gap, surface morphometry combined with single-cell force spectroscopy was performed on surfaces with irregular topographies on the nano-scale. As surfaces, hydrophobized silicon wafers were used that were etched to exhibit surface structures in the same size range as the bacterial cell wall molecules. The surface structures were characterized by a detailed morphometric analysis based on Minkowski functionals revealing both qualitatively similar features and quantitatively different extensions. We find that as the size of the nanostructures increases, the adhesion forces decrease in a way that can be quantified by the area of the surface that is available for the tethering of cell wall molecules. In addition, we observe a bactericidal effect, which is more pronounced on substrates with taller structures but does not influence adhesion. Our results can be used for a targeted development of 3D-structured materials for/against bio-adhesion. Moreover, the morphometric analysis can serve as a future gold standard for characterizing a broad spectrum of material structures. © The Royal Society of Chemistry 2019

    Speech Communication

    Get PDF
    Contains research objectives and summary of research.National Institutes of Health (Grant 2 RO1 NS04332-11)National Institutes of Health (Grant 5 RO1 NS04332-11)U. S. Navy Office of Naval Research (Contract ONR N00014-67-A-0204-0069

    Sub-harmonic resonant excitation of confined acoustic modes at GHz frequencies with a high-repetition-rate femtosecond laser

    Full text link
    We propose sub-harmonic resonant optical excitation with femtosecond lasers as a new method for the characterization of phononic and nanomechanical systems in the gigahertz to terahertz frequency range. This method is applied for the investigation of confined acoustic modes in a free-standing semiconductor membrane. By tuning the repetition rate of a femtosecond laser through a sub-harmonic of a mechanical resonance we amplify the mechanical amplitude, directly measure the linewidth with megahertz resolution, infer the lifetime of the coherently excited vibrational states, accurately determine the system's quality factor, and determine the amplitude of the mechanical motion with femtometer resolution

    Minkowski Tensors of Anisotropic Spatial Structure

    Get PDF
    This article describes the theoretical foundation of and explicit algorithms for a novel approach to morphology and anisotropy analysis of complex spatial structure using tensor-valued Minkowski functionals, the so-called Minkowski tensors. Minkowski tensors are generalisations of the well-known scalar Minkowski functionals and are explicitly sensitive to anisotropic aspects of morphology, relevant for example for elastic moduli or permeability of microstructured materials. Here we derive explicit linear-time algorithms to compute these tensorial measures for three-dimensional shapes. These apply to representations of any object that can be represented by a triangulation of its bounding surface; their application is illustrated for the polyhedral Voronoi cellular complexes of jammed sphere configurations, and for triangulations of a biopolymer fibre network obtained by confocal microscopy. The article further bridges the substantial notational and conceptual gap between the different but equivalent approaches to scalar or tensorial Minkowski functionals in mathematics and in physics, hence making the mathematical measure theoretic method more readily accessible for future application in the physical sciences

    Cell shape analysis of random tessellations based on Minkowski tensors

    Full text link
    To which degree are shape indices of individual cells of a tessellation characteristic for the stochastic process that generates them? Within the context of stochastic geometry and the physics of disordered materials, this corresponds to the question of relationships between different stochastic models. In the context of image analysis of synthetic and biological materials, this question is central to the problem of inferring information about formation processes from spatial measurements of resulting random structures. We address this question by a theory-based simulation study of shape indices derived from Minkowski tensors for a variety of tessellation models. We focus on the relationship between two indices: an isoperimetric ratio of the empirical averages of cell volume and area and the cell elongation quantified by eigenvalue ratios of interfacial Minkowski tensors. Simulation data for these quantities, as well as for distributions thereof and for correlations of cell shape and volume, are presented for Voronoi mosaics of the Poisson point process, determinantal and permanental point processes, and Gibbs hard-core and random sequential absorption processes as well as for Laguerre tessellations of polydisperse spheres and STIT- and Poisson hyperplane tessellations. These data are complemented by mechanically stable crystalline sphere and disordered ellipsoid packings and area-minimising foam models. We find that shape indices of individual cells are not sufficient to unambiguously identify the generating process even amongst this limited set of processes. However, we identify significant differences of the shape indices between many of these tessellation models. Given a realization of a tessellation, these shape indices can narrow the choice of possible generating processes, providing a powerful tool which can be further strengthened by density-resolved volume-shape correlations.Comment: Chapter of the forthcoming book "Tensor Valuations and their Applications in Stochastic Geometry and Imaging" in Lecture Notes in Mathematics edited by Markus Kiderlen and Eva B. Vedel Jense

    Speech Communication

    Get PDF
    Contains research objectives and summary of research on six research projects and reports on three research projects.National Institutes of Health (Grant 5 RO1 NS04332-13)National Institutes of Health (Fellowship 1 F22 MH5825-01)National Institutes of Health (Grant 1 T32 NS07040-01)National Institutes of Health (Fellowship 1 F22 NS007960)National Institutes of Health (Fellowship 1 F22 HD019120)National Institutes of Health (Fellowship 1 F22 HD01919-01)U. S. Army (Contract DAAB03-75-C-0489)National Institutes of Health (Grant 5 RO1 NS04332-12
    • …
    corecore