184 research outputs found

    Effects Of Dietary Protein, Sources And Levels Of Electrolytes On The Performance Of Chicks

    Full text link
    RINGKASAN Suatu seri percobaan telah diadakan untuk menyelidiki pengaruh interaktif kadar protein dan elektrolit di dalam ransum terhadap pertumbuhan dan konversi ransum anak ayam. Ransum yang berbasis jagung-kedelai digunakan dalam percobaan ini, dengan suplementasi NaHCO3, KHCO3, CaCl2, atau NaCl untuk mengubah kadar elektrolit dalam ransum tersebut. Hasil penelitian ini menunjukkan bahwa tidak ditemukan pengaruh interaksi antara kadar protein dan elektrolit terhadap performans anak ayam. Peran kadar Na+ K? Cl dipengaruhi oleh sumber elektrolit yang disuplementasikan ke dalam ransum itu. Lebihan kation di dalam ransum yang besarnya antara 50 sampai 440 miliekivalen tiap kg, tidak mempengaruhi performans anak ayam, apabila kombinasi antara NaHCO3 dan KHCO3 disuplementasikan ke dalam ransum. Namun, apabila hanya salah satu saja yang digunakan sebagai sumber utama elektrolit, pengaruh tersebut nampak. Untuk mendorong pertumbuhan dan konversi yang lebih baik, diperlukan ransum yang mengandung banyak lebihan kation asal KHCO3 dan bukannya dari NaHCO3

    The Effects of Dietary Linoleic Acid and Hydrophilic Antioxidants on Basal, Peak, and Sustained Metabolism in Flight‐trained European Starlings

    Get PDF
    Dietary micronutrients have the ability to strongly influence animal physiology and ecology. For songbirds, dietary polyunsaturated fatty acids (PUFAs) and antioxidants are hypothesized to be particularly important micronutrients because of their influence on an individual\u27s capacity for aerobic metabolism and recovery from extended bouts of exercise. However, the influence of specific fatty acids and hydrophilic antioxidants on whole‐animal performance remains largely untested. We used diet manipulations to directly test the effects of dietary PUFA, specifically linoleic acid (18:2n6), and anthocyanins, a hydrophilic antioxidant, on basal metabolic rate (BMR), peak metabolic rate (PMR), and rates of fat catabolism, lean catabolism, and energy expenditure during sustained flight in a wind tunnel in European starlings (Sturnus vulgaris). BMR, PMR, energy expenditure, and fat metabolism decreased and lean catabolism increased over the course of the experiment in birds fed a high (32%) 18:2n6 diet, while birds fed a low (13%) 18:2n6 diet exhibited the reverse pattern. Additionally, energy expenditure, fat catabolism, and flight duration were all subject to diet‐specific effects of whole‐body fat content. Dietary antioxidants and diet‐related differences in tissue fatty acid composition were not directly related to any measure of whole‐animal performance. Together, these results suggest that the effect of dietary 18:2n6 on performance was most likely the result of the signaling properties of 18:2n6. This implies that dietary PUFA influence the energetic capabilities of songbirds and could strongly influence songbird ecology, given their availability in terrestrial systems

    Almost optimal asynchronous rendezvous in infinite multidimensional grids

    Get PDF
    Two anonymous mobile agents (robots) moving in an asynchronous manner have to meet in an infinite grid of dimension δ> 0, starting from two arbitrary positions at distance at most d. Since the problem is clearly infeasible in such general setting, we assume that the grid is embedded in a δ-dimensional Euclidean space and that each agent knows the Cartesian coordinates of its own initial position (but not the one of the other agent). We design an algorithm permitting the agents to meet after traversing a trajectory of length O(d δ polylog d). This bound for the case of 2d-grids subsumes the main result of [12]. The algorithm is almost optimal, since the Ω(d δ) lower bound is straightforward. Further, we apply our rendezvous method to the following network design problem. The ports of the δ-dimensional grid have to be set such that two anonymous agents starting at distance at most d from each other will always meet, moving in an asynchronous manner, after traversing a O(d δ polylog d) length trajectory. We can also apply our method to a version of the geometric rendezvous problem. Two anonymous agents move asynchronously in the δ-dimensional Euclidean space. The agents have the radii of visibility of r1 and r2, respectively. Each agent knows only its own initial position and its own radius of visibility. The agents meet when one agent is visible to the other one. We propose an algorithm designing the trajectory of each agent, so that they always meet after traveling a total distance of O( ( d)), where r = min(r1, r2) and for r ≥ 1. r)δpolylog ( d r

    Immunological changes in nestlings growing under predation risk

    Get PDF
    Predation is one of the most relevant selective forces in nature. However, the physiological mechanisms behind anti-predator strategies have been overlooked, despite their importance to understand predator-prey interactions. In this context, the immune system could be especially revealing due to its relationship with other critical functions and its ability to enhance prey's probabilities of survival to a predator's attack. Developing organisms (e.g. nestlings) are excellent models to study this topic because they suffer a high predation pressure while undergoing the majority of their development, which maximizes potential trade-offs between immunity and other biological functions. Using common blackbirds Turdus merula as model species, we experimentally investigated whether an elevated nest predation risk during the nestling period affects nestlings' immunity and its possible interactions with developmental conditions (i.e. body condition and growth). Experimental nestlings modified some components of their immunity, but only when considering body condition and growth rate, indicating a multifaceted immunological response to predation risk and an important mediator role of nestlings' developmental conditions. Predation risk induced a suppression of IgY but an increase in lymphocytes in nestlings with poor body condition. In addition, experimental but not control nestlings showed a negative correlation between growth and heterophils, demonstrating that nest predation risk can affect the interaction between growth and immunity. This study highlights the importance of immunity in anti-predator response in nestlings and shows the relevance of including physiological components to the study of predation risk.</p

    Avian Pathogenic Escherichia coli (APEC) Infection Alters Bone Marrow Transcriptome in Chickens

    Get PDF
    Avian pathogenic Escherichia coli (APEC) is a major cause of disease impacting animal health. The bone marrow is the reservoir of immature immune cells; however, it has not been examined to date for gene expression related to developmental changes (cell differentiation, maturation, programming) after APEC infection. Here, we study gene expression in the bone marrow between infected and non-infected animals, and between infected animals with mild (resistant) versus severe (susceptible) pathology, at two times post-infection. We sequenced 24 bone marrow RNA libraries generated from the six different treatment groups with four replicates each, and obtained an average of 22 million single-end, 100-bp reads per library. Genes were detected as differentially expressed (DE) between APEC treatments (mild pathology, severe pathology, and mock-challenged) at a given time point, or DE between 1 and 5 days post-infection (dpi) within the same treatment group. Results demonstrate that many immune cells, genes and related pathways are key contributors to the different responses to APEC infection between susceptible and resistant birds and between susceptible and non-challenged birds, at both times post-infection. In susceptible birds, lymphocyte differentiation, proliferation, and maturation were greatly impaired, while the innate and adaptive immune responses, including dendritic cells, monocytes and killer cell activity, TLR- and NOD-like receptor signaling, as well as T helper cells and many cytokine activities, were markedly enhanced. The resistant birds’ immune system, however, was similar to that of non-challenged birds. The DE genes in the immune cells and identified signaling models are representative of activation and resolution of infection in susceptible birds at both post-infection days. These novel results characterizing transcriptomic response to APEC infection reveal that there is combinatorial activity of multiple genes controlling myeloid cells, and B and T cell lymphopoiesis, as well as immune responses occurring in the bone marrow in these early stages of response to infection

    Effect of added zinc in diets with ractopamine hydrochloride on growth performance, carcass characteristics, and ileal mucosal inflammation mRNA expression of finishing pigs

    Get PDF
    Citation: Paulk, C. B., Burnett, D. D., Tokach, M. D., Nelssen, J. L., Dritz, S. S., Derouchey, J. M., . . . Gonzalez, J. M. (2015). Effect of added zinc in diets with ractopamine hydrochloride on growth performance, carcass characteristics, and ileal mucosal inflammation mRNA expression of finishing pigs. Journal of Animal Science, 93(1), 185-196. doi:10.2527/jas2014-8286Two experiments were conducted to determine the effects of increasing the dietary Zn content on growth performance, carcass characteristics, plasma Zn, and ileal mucosal inflammation mRNA expression of finishing pigs fed diets containing ractopamine HCl (RAC; Elanco Animal Health, Greenfield, IN). In Exp. 1, 312 pigs (327 × 1050; PIC, Hendersonville, TN; 94 kg BW) were used in a 27-d study. There were 2 pigs per pen and 26 pens per treatment. Treatments included a corn–soybean meal diet (control; 0.66% standardized ileal digestible [SID] Lys); a diet (0.92% SID Lys) with 10 mg/kg RAC; and the RAC diet plus 50, 100, or 150 mg Zn/kg from ZnO or 50 mg Zn/kg from a Zn AA complex (ZnAA; Availa-Zn; Zinpro, Eden Prairie, MN). All diets also contained 83 mg Zn/kg from ZnSO4 in the trace mineral premix. Pigs fed the RAC diet without added Zn had increased (P &lt; 0.05) ADG, G:F, HCW, carcass yield, and loin weight compared with pigs fed the control diet. Increasing Zn from ZnO in diets containing RAC tended to increase (linear, P = 0.067) G:F and loin weight (quadratic, P = 0.064). Pigs fed diets with 50 mg Zn/kg from ZnAA tended to have increased (P = 0.057) ADG compared with pigs fed the RAC diet. In Exp. 2, 320 pigs (327 × 1050; PIC; 98 kg BW) were used in a 35-d study. There were 2 pigs per pen and 20 pens per treatment. Treatments included a control diet (0.66% SID Lys); a diet (0.92% SID Lys) with 10 mg/ kg RAC; or the RAC diet plus 75, 150, and 225 mg Zn/ kg from ZnO or ZnAA. All diets also contained 55 mg Zn/kg from ZnSO4 from the trace mineral premix. Pigs fed the RAC diet had increased (P &lt; 0.05) ADG, G:F, HCW, loin depth, percentage lean, and liver weight compared with pigs fed the control diet. No Zn level or source effects or level × source interactions were observed for growth performance. A Zn level × source interaction (quadratic, P = 0.007) was observed in liver Zn concentrations. This resulted from liver Zn concentrations plateauing at 150 mg Zn/kg when ZnO was supplemented, while there was a linear increase when using ZnAA. Increasing Zn in diets containing RAC increased (linear, P &lt; 0.05) plasma Zn on d 18 and 32. The expression of IL-1? was increased (P = 0.014) in mucosa of pigs fed the RAC diet compared with those fed the control diet. Expression of IL-1? decreased (linear, P = 0.026) in the mucosa of pigs fed increasing added Zn. In conclusion, adding Zn to diets containing RAC resulted in a trend for improved growth performance of pigs in 1 of 2 experiments. Also, additional Zn increased plasma Zn and reduced IL-1?. © 2015 American Society of Animal Science. All rights reserved

    Wild Skylarks Seasonally Modulate Energy Budgets but Maintain Energetically Costly Inflammatory Immune Responses throughout the Annual Cycle

    Get PDF
    A central hypothesis of ecological immunology is that immune defences are traded off against competing physiological and behavioural processes. During energetically demanding periods, birds are predicted to switch from expensive inflammatory responses to less costly immune responses. Acute phase responses (APRs) are a particularly costly form of immune defence, and, hence, seasonal modulations in APRs are expected. Yet, hypotheses about APR modulation remain untested in free-living organisms throughout a complete annual cycle. We studied seasonal modulations in the APRs and in the energy budgets of skylarks Alauda arvensis, a partial migrant bird from temperate zones that experiences substantial ecological changes during its annual cycle. We characterized throughout the annual cycle changes in their energy budgets by measuring basal metabolic rate (BMR) and body mass. We quantified APRs by measuring the effects of a lipopolysaccharide injection on metabolic rate, body mass, body temperature, and concentrations of glucose and ketone. Body mass and BMR were lowest during breeding, highest during winter and intermediate during spring migration, moult and autumn migration. Despite this variation in energy budgets, the magnitude of the APR, as measured by all variables, was similar in all annual cycle stages. Thus, while we find evidence that some annual cycle stages are relatively more energetically constrained, we find no support for the hypothesis that during these annual cycle stages birds compromise an immune defence that is itself energetically costly. We suggest that the ability to mount an APR may be so essential to survival in every annual cycle stage that skylarks do not trade off this costly form of defence with other annual cycle demands
    corecore