124 research outputs found

    ADP-Ribosylation Factor 6 Expression and Activation Are Reduced in Myometrium in Complicated Pregnancies

    Get PDF
    ARF6 (ADP-ribosylation factor 6) small GTP binding protein plays critical roles in actin cytoskeleton rearrangements and membrane trafficking, including internalisation of G protein coupled receptors (GPCR). ARF6 operates by cycling between GDP-bound (inactive) and GTP-bound (active) forms and is a potential regulator of GPCR-mediated uterine activity during pregnancy and labour. ARF6 contains very low intrinsic GTP binding activity and depends on GEFs (guanine nucleotide exchange factors) such as CYTH3 (cytohesin 3) to bind GTP. ARF6 and CYTH3 were originally cloned from human placenta, but there is no information on their expression in other reproductive tissues.The expression of ARF6, ARF1, and CYTH1-4 was investigated by measuring mRNA (using RT-PCR) and protein levels (using immunoblotting) in samples of myometrium obtained from non-pregnant women, and women with normal pregnancies, before or after the spontaneous onset of labour. We also analysed myometrial samples from women with spontaneous preterm labour and from women with complicated pregnancies requiring emergency preterm delivery. The GST)-effector pull down assay was used to study the presence of active ARF6 and ARF1 in all myometrial extracts.ARF6, ARF1 and CYTH3 but not CYTH1, CYTH2 and CYTH4 were expressed in all samples and the levels did not change with pregnancy or labour. However, ARF6 and CYTH3 but not ARF1 levels were significantly reduced in complicated pregnancies. The alterations in the expression of ARF6 and its GEF in human myometrium indicate a potential involvement of this signalling system in modulating the response of myometrial smooth muscle in complicated pregnancies. The levels of ARF6-GTP or ARF1-GTP did not change with pregnancy or labour but ARF6-GTP levels were significantly decreased in women with severe complications of pregnancy.We have demonstrated a functional ARF6 system in human myometrium and a correlation between ARF6 level and activity in uterine and abnormal pregnancy

    Identification of a Guanine Nucleotide Exchange Factor for Arf3, the Yeast Orthologue of Mammalian Arf6

    Get PDF
    Small G proteins of the Arf and Rab families are fundamental to the organisation and activity of intracellular membranes. One of the most well characterised of these G proteins is mammalian Arf6, a protein that participates in many cellular processes including endocytosis, actin remodelling and cell adhesion. Exchange of GDP for GTP on Arf6 is performed by a variety of guanine nucleotide exchange factors (GEFs), principally of the cytohesin (PSCD) and EFA6 (PSD) families. In this paper we describe the characterisation of a GEF for the yeast orthologue of Arf6, Arf3, which we have named Yel1 (yeast EFA6-like-1) using yeast genetics, fluorescence microscopy and in vitro nucleotide exchange assays. Yel1 appears structurally related to the EFA6 family of GEFs, having an N-terminal Sec7 domain and C-terminal PH and coiled-coil domains. We find that Yel1 is constitutively targeted to regions of polarised growth in yeast, where it co-localises with Arf3. Moreover the Sec7 domain of Yel1 is required for its membrane targeting and for that of Arf3. Finally we show that the isolated Yel1 Sec7 domain strongly stimulates nucleotide exchange activity specifically on Arf3 in vitro

    The Non-Catalytic Carboxyl-Terminal Domain of ARFGAP1 Regulates Actin Cytoskeleton Reorganization by Antagonizing the Activation of Rac1

    Get PDF
    The regulation of the actin cytoskeleton and membrane trafficking is coordinated in mammalian cells. One of the regulators of membrane traffic, the small GTP-binding protein ARF1, also activates phosphatidylinositol kinases that in turn affect actin polymerization. ARFGAP1 is a GTPase activating protein (GAP) for ARF1 that is found on Golgi membranes. We present evidence that ARFGAP1 not only serves as a GAP for ARF1, but also can affect the actin cytoskeleton.As cells attach to a culture dish foci of actin appear prior to the cells flattening and spreading. We have observed that overexpression of a truncated ARFGAP1 that lacks catalytic activity for ARF, called GAP273, caused these foci to persist for much longer periods than non-transfected cells. This phenomenon was dependent on the level of GAP273 expression. Furthermore, cell spreading after re-plating or cell migration into a previously scraped area was inhibited in cells transfected with GAP273. Live cell imaging of such cells revealed that actin-rich membrane blebs formed that seldom made protrusions of actin spikes or membrane ruffles, suggesting that GAP273 interfered with the regulation of actin dynamics during cell spreading. The over-expression of constitutively active alleles of ARF6 and Rac1 suppressed the effect of GAP273 on actin. In addition, the activation of Rac1 by serum, but not that of RhoA or ARF6, was inhibited in cells over-expressing GAP273, suggesting that Rac1 is a likely downstream effector of ARFGAP1. The carboxyl terminal 65 residues of ARFGAP1 were sufficient to produce the effects on actin and cell spreading in transfected cells and co-localized with cortical actin foci.ARFGAP1 functions as an inhibitor upstream of Rac1 in regulating actin cytoskeleton. In addition to its GAP catalytic domain and Golgi binding domain, it also has an actin regulation domain in the carboxyl-terminal portion of the protein

    Type 2 Diabetes Is Associated with Altered NF-κB DNA Binding Activity, JNK Phosphorylation, and AMPK Phosphorylation in Skeletal Muscle after LPS

    Get PDF
    Systemic inflammation is often associated with impaired glucose metabolism. We therefore studied the activation of inflammatory pathway intermediates that interfere with glucose uptake during systemic inflammation by applying a standardised inflammatory stimulus in vivo. After ethical approval, informed consent and a thorough physical examination, 10 patients with type 2 diabetes and 10 participants with normal glucose tolerance (NGT) were given an intravenous bolus of E. coli lipopolysaccharide (LPS) of 0.3 ng/kg. Skeletal muscle biopsies and plasma were obtained at baseline and two, four and six hours after LPS. Nuclear factor (NF)-κB p65 DNA binding activity measured by ELISA, tumor necrosis factor-α and interleukin-6 mRNA expression analysed by real time reverse transcription polymerase chain reaction, and abundance of inhibitor of NF-κB (IκB)α, phosphorylated c-Jun-N-terminal kinase (JNK), AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase measured by Western blotting were detected in muscle biopsy samples. Relative to subjects with NGT, patients with type 2 diabetes exhibited a more pronounced increase in NF-κB binding activity and JNK phosphorylation after LPS, whereas skeletal muscle cytokine mRNA expression did not differ significantly between groups. AMPK phosphorylation increased in volunteers with NGT, but not in those with diabetes. The present findings indicate that pathways regulating glucose uptake in skeletal muscle may be involved in the development of inflammation-associated hyperglycemia. Patients with type 2 diabetes exhibit changes in these pathways, which may ultimately render such patients more prone to develop dysregulated glucose disposal in the context of systemic inflammation

    Satellite Cells Derived from Obese Humans with Type 2 Diabetes and Differentiated into Myocytes In Vitro Exhibit Abnormal Response to IL-6

    Get PDF
    Obesity and type 2 diabetes are associated with chronically elevated systemic levels of IL-6, a pro-inflammatory cytokine with a role in skeletal muscle metabolism that signals through the IL-6 receptor (IL-6Rα). We hypothesized that skeletal muscle in obesity-associated type 2 diabetes develops a resistance to IL-6. By utilizing western blot analysis, we demonstrate that IL-6Rα protein was down regulated in skeletal muscle biopsies from obese persons with and without type 2 diabetes. To further investigate the status of IL-6 signaling in skeletal muscle in obesity-associated type 2 diabetes, we isolated satellite cells from skeletal muscle of people that were healthy (He), obese (Ob) or were obese and had type 2 diabetes (DM), and differentiated them in vitro into myocytes. Down-regulation of IL-6Rα was conserved in Ob myocytes. In addition, acute IL-6 administration for 30, 60 and 120 minutes, resulted in a down-regulation of IL-6Rα protein in Ob myocytes compared to both He myocytes (P<0.05) and DM myocytes (P<0.05). Interestingly, there was a strong time-dependent regulation of IL-6Rα protein in response to IL-6 (P<0.001) in He myocytes, not present in the other groups. Assessing downstream signaling, DM, but not Ob myocytes demonstrated a trend towards an increased protein phosphorylation of STAT3 in DM myocytes (P = 0.067) accompanied by a reduced SOCS3 protein induction (P<0.05), in response to IL-6 administration. Despite this loss of negative control, IL-6 failed to increase AMPKα2 activity and IL-6 mRNA expression in DM myocytes. There was no difference in fusion capacity of myocytes between cell groups. Our data suggest that negative control of IL-6 signaling is increased in myocytes in obesity, whereas a dysfunctional IL-6 signaling is established further downstream of IL-6Rα in DM myocytes, possibly representing a novel mechanism by which skeletal muscle function is compromised in type 2 diabetes

    Phospholipase D signaling: orchestration by PIP2 and small GTPases

    Get PDF
    Hydrolysis of phosphatidylcholine by phospholipase D (PLD) leads to the generation of the versatile lipid second messenger, phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be dramatically stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and, particularly, by the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 is well known as substrate for the generation of second messengers by phospholipase C, but is now also understood to recruit and/or activate a variety of actin regulatory proteins, ion channels and other signaling proteins, including PLD, by direct interaction. The synthesis of PIP2 by phosphoinositide 5-kinase (PIP5K) isoforms is tightly regulated by small GTPases and, interestingly, by PA as well, and the concerted formation of PIP2 and PA has been shown to mediate receptor-regulated cellular events. This review highlights the regulation of PLD by membrane receptors, and describes how the close encounter of PLD and PIP5K isoforms with small GTPases permits the execution of specific cellular functions

    Phenotypic characterisation of regulatory T cells in dogs reveals signature transcripts conserved in humans and mice

    Get PDF
    Regulatory T cells (Tregs) are a double-edged regulator of the immune system. Aberrations of Tregs correlate with pathogenesis of inflammatory, autoimmune and neoplastic disorders. Phenotypically and functionally distinct subsets of Tregs have been identified in humans and mice on the basis of their extensive portfolios of monoclonal antibodies (mAb) against Treg surface antigens. As an important veterinary species, dogs are increasingly recognised as an excellent model for many human diseases. However, insightful study of canine Tregs has been restrained by the limited availability of mAb. We therefore set out to characterise CD4+CD25high T cells isolated ex vivo from healthy dogs and showed that they possess a regulatory phenotype, function, and transcriptomic signature that resembles those of human and murine Tregs. By launching a cross-species comparison, we unveiled a conserved transcriptomic signature of Tregs and identified that transcript hip1 may have implications in Treg function

    Temperature-sensitive tumorigenicity of cells transformed by a mutant of Moloney sarcoma virus.

    No full text
    Normal rat kidney cells were nonproductively infected either with CP27, a mutant of Moloney sarcoma virus that is temperature-sensitive for maintenance of transformation, or with the parental wild-type virus. The nonproducer cells were inoculated into the tails of athymic nude mice that were subsequently incubated at 28 or 36 degrees C. CP27-infected cells induced tumors only at 28 degrees C, whereas cells infected with wild-type Moloney sarcoma virus were tumorigenic at both temperatures. Tumors induced at 28 degrees C by wild-type virus-infected cells grew faster after shift of the mice to 36 degrees C. In contrast, tumors induced by CP27-infected cells regressed upon shift to 36 degrees C, indicating that continuous expression of viral functions is required for persistence and growth of the tumors. After regression, secondary tumor growth was observed late after upshift of temperature-sensitive tumors. Cells recovered from these late-appearing tumors were tumorigenic at the nonpermissive temperature, and tumors induced by these cells did not regress after upshift. Virus rescued from these recovered cells retained the temperature-sensitivity for focus formation, indicating that the occurrence of the phenotypically wild-type cells was due to host cell modifications rather than to reversion of the CP27 genome
    corecore