56 research outputs found

    Quantifying through-space charge transfer dynamics in \u3c0-coupled molecular systems

    Get PDF
    understanding the role of intermolecular interaction on through-space charge transfer characteristics in \u3c0-stacked molecular systems is central to the rational design of electronic materials. However, a quantitative study of charge transfer in such systems is often difficult because of poor control over molecular morphology. Here we use the core-hole clock implementation of resonant photoemission spectroscopy to study the femtosecond chargetransfer dynamics in cyclophanes, which consist of two precisely stacked \u3c0-systems held together by aliphatic chains. We study two systems, [2,2]paracyclophane (22PCP) and [4,4]paracyclophane (44PCP), with inter-ring separations of 3.0 and 4.0 \uc5, respectively. We find that charge transfer across the \u3c0-coupled system of 44PCP is 20 times slower than in 22PCP. We attribute this difference to the decreased inter-ring electronic coupling in 44PCP. These measurements illustrate the use of core-hole clock spectroscopy as a general tool for quantifying through-space coupling in \u3c0-stacked systems

    Determination of the structure and geometry of N-heterocyclic carbenes on Au(111) using high-resolution spectroscopy

    Get PDF
    N-heterocyclic carbenes (NHCs) bind very strongly to transition metals due to their unique electronic structure featuring a divalent carbon atom with a lone pair in a highly directional sp(2)-hybridized orbital. As such, they can be assembled into monolayers on metal surfaces that have enhanced stability compared to their thiol-based counterparts. The utility of NHCs to form such robust self-assembled monolayers (SAMs) was only recently recognized and many fundamental questions remain. Here we investigate the structure and geometry of a series of NHCs on Au(111) using high-resolution X-ray photoelectron spectroscopy and density functional theory calculations. We find that the N-substituents on the NHC ring strongly affect the molecule-metal interaction and steer the orientation of molecules in the surface layer. In contrast to previous reports, our experimental and theoretical results provide unequivocal evidence that NHCs with N-methyl substituents bind to undercoordinated adatoms to form flat-lying complexes. In these SAMs, the donor-acceptor interaction between the NHC lone pair and the undercoordinated Au adatom is primarily responsible for the strong bonding of the molecules to the surface. NHCs with bulkier N-substituents prevent the formation of such complexes by forcing the molecules into an upright orientation. Our work provides unique insights into the bonding and geometry of NHC monolayers; more generally, it charts a clear path to manipulating the interaction between NHCs and metal surfaces using traditional coordination chemistry synthetic strategies

    Relating Energy Level Alignment and Amine-Linked Single Molecule Junction Conductance

    Full text link
    Using photoemission spectroscopy, we determine the relationship between electronic energy level alignment at a metal-molecule interface and single-molecule junction transport data. We measure the position of the highest occupied molecular orbital (HOMO) relative to the Au metal Fermi level for three 1,4-benzenediamine derivatives on Au(111) and Au(110) with ultraviolet and resonant x-ray photoemission spectroscopy. We compare these results to scanning tunnelling microscope based break-junction measurements of single molecule conductance and to first-principles calculations. We find that the energy difference between the HOMO and Fermi level for the three molecules adsorbed on Au(111) correlate well with changes in conductance, and agree well with quasiparticle energies computed from first-principles calculations incorporating self-energy corrections. On the Au(110) which present Au atoms with lower-coordination, critical in break-junction conductance measurements, we see that the HOMO level shifts further from the Fermi level. These results provide the first direct comparison of spectroscopic energy level alignment measurements with single molecule junction transport data

    Tuning ultrafast electron injection dynamics at organic-graphene/metal interfaces

    Get PDF
    We compare the ultrafast charge transfer dynamics of molecules on epitaxial graphene and bilayer graphene grown on Ni(111) interfaces through first principles calculations and X-ray resonant photoemission spectroscopy. We use 4,4'-bipyridine as a prototypical molecule for these explorations as the energy level alignment of core-excited molecular orbitals allows ultrafast injection of electrons from a substrate to a molecule on a femtosecond timescale. We show that the ultrafast injection of electrons from the substrate to the molecule is 3c4 times slower on weakly coupled bilayer graphene than on epitaxial graphene. Through our experiments and calculations, we can attribute this to a difference in the density of states close to the Fermi level between graphene and bilayer graphene. We therefore show how graphene coupling with the substrate influences charge transfer dynamics between organic molecules and graphene interfaces

    Length-Independent Charge Transport in Chimeric Molecular Wires

    Get PDF
    Advanced molecular electronic components remain vital for the next generation of miniaturized integrated circuits. Thus, much research effort has been devoted to the discovery of lossless molecular wires, for which the charge transport rate or conductivity is not attenuated with length in the tunneling regime. Herein, we report the synthesis and electrochemical interrogation of DNA-like molecular wires. We determine that the rate of electron transfer through these constructs is independent of their length and propose a plausible mechanism to explain our findings. The reported approach holds relevance for the development of high-performance molecular electronic components and the fundamental study of charge transport phenomena in organic semiconductors

    Sex- and age-related differences in the management and outcomes of chronic heart failure: an analysis of patients from the ESC HFA EORP Heart Failure Long-Term Registry

    Get PDF
    Aims: This study aimed to assess age- and sex-related differences in management and 1-year risk for all-cause mortality and hospitalization in chronic heart failure (HF) patients. Methods and results: Of 16 354 patients included in the European Society of Cardiology Heart Failure Long-Term Registry, 9428 chronic HF patients were analysed [median age: 66 years; 28.5% women; mean left ventricular ejection fraction (LVEF) 37%]. Rates of use of guideline-directed medical therapy (GDMT) were high (angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, beta-blockers and mineralocorticoid receptor antagonists: 85.7%, 88.7% and 58.8%, respectively). Crude GDMT utilization rates were lower in women than in men (all differences: P\ua0 64 0.001), and GDMT use became lower with ageing in both sexes, at baseline and at 1-year follow-up. Sex was not an independent predictor of GDMT prescription; however, age >75 years was a significant predictor of GDMT underutilization. Rates of all-cause mortality were lower in women than in men (7.1% vs. 8.7%; P\ua0=\ua00.015), as were rates of all-cause hospitalization (21.9% vs. 27.3%; P\ua075 years. Conclusions: There was a decline in GDMT use with advanced age in both sexes. Sex was not an independent predictor of GDMT or adverse outcomes. However, age >75 years independently predicted lower GDMT use and higher all-cause mortality in patients with LVEF 6445%

    Agent-based modeling of the demand-side flexibility

    No full text
    The paper presents an agent-based approach to model the flexibility of the demand-side. It uses Q-learning algorithm to model a behavior of a demand-side agent, so to investigate the elasticity of the demand to the change in price. Often, market simulation models assume that the demand elasticity is known, however due the lack of data this elasticity is not easy to determine. The objective of this paper is to evaluate the flexibility of the total system demand, and the shift in the consumption with the price, i.e. increase in the demand when the price is low, and a decrease in the demand when the price is high. The here presented model of a demand-side agent is incorporated into the market simulator with double-sided auctions, and is tested on the Slovenian market. However, this approach can be used to estimate flexibility in any system for which the forecasted demand data and generation offers are know

    Strong Chemical Interaction and Self-Demetalation of Zinc-Phthalocyanine on Al(100)

    No full text
    We investigate the early stages of the growth of zinc-phthalocyanine on Al(100) using X-ray photoemission spectroscopy (XPS) and low-energy electron diffraction (LEED). Diffraction patterns show a (5 × 5) reconstruction, characteristic of flat-lying molecules forming a long-range-ordered structure with a square unit cell. The degree of ordering (i.e., the average domain size) is increased when the substrate is kept above 100 °C during the deposition. At low coverage (≤1 ML), a sizeable charge transfer from the substrate to the molecules is observed, indicating a strong interaction at the organic-inorganic interface. As a consequence of charge filling of ZnPc LUMO, a self-demetalation of the molecule occurs while the structure of the ligand remains mostly unaffected

    Femtosecond electron transfer at core-excited adsorbed molecules

    No full text
    Charge transfer phenomena at metal/organic interfaces are a crucial step affecting the efficiencies of devices for organic based electronics and photovoltaics. A quantitative study of electron transfer rates, which take place on the femtosecond timescale, is often difficult, especially since in most systems the molecular adsorption geometry is unknown. Electron core-level spectroscopies have emerged as effective tools to investigate several aspects of the hybrid interface between organic molecules and a substrate. In particular, X-ray resonant photoemission spectroscopy can measure interfacial electron transfer times down to the femtosecond timescale. Furthermore, the strong perturbation induced by the core hole opens up the several questions on how the properties of the interface are modified, calling for a theoretical description of the core-excited system. Here, we use X-ray resonant photoemission spectroscopy to measure ultrafast charge transfer rates across pyridine/Au(111) interfaces while also controlling the molecular orientation on the metal [1]. We demonstrate that a bi-directional charge transfer across the molecule/metal interface is enabled upon creation of a core-exciton on the molecule with a rate that has a strong dependence on the molecular adsorption angle. We adopt a theoretical framework based on density-functional theory (DFT), where the excitation is introduced explicitly in the core-level occupation of an atom in a molecule, to investigate the electronic structure and electron transfer from/to the molecules adsorbed on a semi-infinite metal, whose continuum of states is described by a Green's function method [2]. We show that the alignment of molecular levels relative to the metal Fermi level is dramatically altered when a core-hole is created on the molecule, allowing the lowest unoccupied molecular orbital to fall partially below the metal Fermi level opening to substrate-to-molecule electron transfer in X-ray photoemission experiments. We also calculate charge transfer rates as a function of molecular adsorption geometry and find a trend in semiquantitative agreement with the experiment [1]. References: [1] D. Cvetko, G. Fratesi, G. Kladnik, A. Cossaro, G.P. Brivio, L. Venkataraman, and A. Morgante, Phys. Chem. Chem. Phys. 18 (2016) 22140 [2] G. Fratesi, C. Motta, M. I. Trioni, G. P. Brivio, and D. S\ue1nchez-Portal, J. Phys. Chem. C 118 (2014) 877
    • …
    corecore