2,022 research outputs found

    Search for sdB/WD pulsators in the Kepler FOV

    Full text link
    In this article we present the preliminary results of an observational search for subdwarf B and white dwarf pulsators in the Kepler field of view, performed using the DOLORES camera attached to the 3.6m Telescopio Nazionale Galileo (TNG).Comment: Communications in Asteroseismology, in press; 2 pages, 1 figur

    Solar-like oscillations of semiregular variables

    Get PDF
    Oscillations of the Sun and solar-like stars are believed to be excited stochastically by convection near the stellar surface. Theoretical modeling predicts that the resulting amplitude increases rapidly with the luminosity of the star. Thus one might expect oscillations of substantial amplitudes in red giants with high luminosities and vigorous convection. Here we present evidence that such oscillations may in fact have been detected in the so-called semiregular variables, extensive observations of which have been made by amateur astronomers in the American Association for Variable Star Observers (AAVSO). This may offer a new opportunity for studying the physical processes that give rise to the oscillations, possibly leading to further information about the properties of convection in these stars.Comment: Astrophys. J. Lett., in the press. Processed with aastex and emulateap

    Photoionization cross sections of O II, O III, O IV, and O V: benchmarking R-matrix theory and experiments

    Get PDF
    For crucial tests between theory and experiment, ab initio close coupling calculations are carried out for photoionization of O II, O III, O IV, O V. The relativistic fine structure and resonance effects are studied using the R-matrix and its relativistic variant the Breit Pauli R-matrix (BPRM) approximation. Detailed comparison is made with high resolution experimental measurements carried out in three different set-ups: Advanced Light Source at Berkeley, and synchrotron radiation experiments at University of Aarhus and University of Paris-Sud. The comparisons illustrate physical effects in photoionization such as (i) fine structure, (ii) resolution, and (iii) metastable components. Photoionization cross sections sigma{PI} of the ground and a few low lying excited states of these ions obtained in the experimental spectrum include combined features of these states. Theoretically calculated resonances need to be resolved with extremely fine energy mesh for precise comparison. In addition, prominent resonant features are observed in the measured spectra from transitions allowed with relativistic fine structure, but not in LS coupling. The sigma_{PI} are obtained for ground and metastable (i) 2s^22p^3(^4S^o, ^2D^o, ^2P^o) states of O II, (ii) 2s^22p^2(^3P,^1D,^1S) and 2s2p^3(^5S^o) states of O III, (iii) 2s^22p(^2P^o_J) and 2s2p^2(^4P_J) levels of O IV, and (iv) 2s^2(^1S) and 2s2p(^3P^o,^1P^o) states of O V. It is found that resonances in ground and metastable cross sections can be a diagnostic of experimental beam composition, with potential ap plications to astrophysical and laboratory plasma environments.Comment: 27 pages, 7 figs., submitted to Phys. Rev. A., text with high resolution figures at http://www.astronomy.ohio-state.edu/~pradhan/Oions.p

    Solar-like oscillations in the metal-poor subgiant nu Indi: II. Acoustic spectrum and mode lifetime

    Full text link
    Convection in stars excites resonant acoustic waves which depend on the sound speed inside the star, which in turn depends on properties of the stellar interior. Therefore, asteroseismology is an unrivaled method to probe the internal structure of a star. We made a seismic study of the metal-poor subgiant star nu Indi with the goal of constraining its interior structure. Our study is based on a time series of 1201 radial velocity measurements spread over 14 nights obtained from two sites, Siding Spring Observatory in Australia and ESO La Silla Observatory in Chile. The power spectrum of the high precision velocity time series clearly presents several identifiable peaks between 200 and 500 uHz showing regularity with a large and small spacing of 25.14 +- 0.09 uHz and 2.96 +- 0.22 uHz at 330 uHz. Thirteen individual modes have been identified with amplitudes in the range 53 to 173 cm/s. The mode damping time is estimated to be about 16 days (1-sigma range between 9 and 50 days), substantially longer than in other stars like the Sun, the alpha Cen system or the giant xi Hya.Comment: 5 pages, 7 figures, A&A accepte

    The role of turbulent pressure as a coherent pulsational driving mechanism: the case of the delta Scuti star HD 187547

    Get PDF
    HD 187547 was the first candidate that led to the suggestion that solar-like oscillations are present in delta Scuti stars. Longer observations, however, show that the modes interpreted as solar-like oscillations have either very long mode lifetimes, longer than 960 days, or are coherent. These results are incompatible with the nature of `pure' stochastic excitation as observed in solar-like stars. Nonetheless, one point is certain: the opacity mechanism alone cannot explain the oscillation spectrum of HD 187547. Here we present new theoretical investigations showing that convection dynamics can intrinsically excite coherent pulsations in the chemically peculiar delta Scuti star HD 187547. More precisely, it is the perturbations of the mean Reynold stresses (turbulent pressure) that drives the pulsations and the excitation takes place predominantly in the hydrogen ionization zone.Comment: 8 pages, 4 figures, accepted to Ap

    Solar-like oscillations in the G8 V star tau Ceti

    Full text link
    We used HARPS to measure oscillations in the low-mass star tau Cet. Although the data were compromised by instrumental noise, we have been able to extract the main features of the oscillations. We found tau Cet to oscillate with an amplitude that is about half that of the Sun, and with a mode lifetime that is slightly shorter than solar. The large frequency separation is 169 muHz, and we have identified modes with degrees 0, 1, 2, and 3. We used the frequencies to estimate the mean density of the star to an accuracy of 0.45% which, combined with the interferometric radius, gives a mass of 0.783 +/- 0.012 M_sun (1.6%).Comment: accepted for publication in A&

    NEAR-SURFACE EFFECTS IN MODELLING OSCILLATIONS OF ETA BOO

    Full text link
    Following the report of solar-like oscillations in the G0 V star eta Boo (Kjeldsen et al. 1995, AJ 109, 1313), a first attempt to model the observed frequencies was made by Christensen-Dalsgaard et al. (1995, ApJ Letters, in press). This attempt succeeded in reproducing the observed frequency separations, although there remained a difference of about 10 microHz between observed and computed frequencies. In those models, the near-surface region of the star was treated rather crudely. Here we consider more sophisticated models that include non-local mixing-length theory, turbulent pressure and nonadiabatic oscillations.Comment: uuencoded and compressed Postscript (2 pages, including figure); To appear in Proceedings of IAU Colloquium 155, "Astrophysical Applications of Stellar Pulsation", Cape Town, South Afric

    p-mode frequencies in solar-like stars : I. Procyon A

    Full text link
    As a part of an on-going program to explore the signature of p-modes in solar-like stars by means of high-resolution absorption lines pectroscopy, we have studied four stars (alfaCMi, etaCas A, zetaHer A and betaVir). We present here new results from two-site observations of Procyon A acquired over twelve nights in 1999. Oscillation frequencies for l=1 and l=0 (or 2) p-modes are detected in the power spectra of these Doppler shift measurements. A frequency analysis points out the dificulties of the classical asymptotic theory in representing the p-mode spectrum of Procyon A

    Solving the m-mixing problem for the three-dimensional time-dependent Schr\"{o}dinger equation by rotations: application to strong-field ionization of H2+

    Get PDF
    We present a very efficient technique for solving the three-dimensional time-dependent Schrodinger equation. Our method is applicable to a wide range of problems where a fullly three-dimensional solution is required, i.e., to cases where no symmetries exist that reduce the dimensionally of the problem. Examples include arbitrarily oriented molecules in external fields and atoms interacting with elliptically polarized light. We demonstrate that even in such cases, the three-dimensional problem can be decomposed exactly into two two-dimensional problems at the cost of introducing a trivial rotation transformation. We supplement the theoretical framework with numerical results on strong-field ionization of arbitrarily oriented H2+ molecules.Comment: 5 pages, 4 figure
    • …
    corecore