30 research outputs found

    Comparative pathogenesis of type 1 (European genotype) and type 2 (North American genotype) porcine reproductive and respiratory syndrome virus in infected boar

    Get PDF
    Background : Porcine reproductive and respiratory syndrome virus (PRRSV) now has two main genotypes, genotype 1 (European) and genotype 2 (North American). There is a lack of data on the comparison of pathogenicity of the two genotypes in boars. The objectives of the present study were to evaluate the amount of PRRSV present in semen over time and compare the viral distribution and microscopic lesions of type 1 and type 2 PRRSV-infected boars. Methods : Twenty-four 8-month-old PRRSV-naïve Duroc boars were randomly allocated to 3 treatment groups. The boars in groups 1 (n = 9) and 2 (n = 9) were intranasally inoculated with type 1 or type 2 PRRSV, respectively. The boars in groups 1 (n = 6) served as negative controls. Semen and blood samples were collected up to 35 days post-inoculation (dpi), and necropsies were performed on 14, 21, and 35 dpi. Results : There were no significant differences in the genomic copy number of PRRSV, microscopic testicular lesion score, number of PRRSV-positive germ cells, or number of apoptotic cells between the type 1 and type 2 PRRSV-infected boars throughout the experiment. Histopathological changes were manifested by the desquamation of spermatocytes and the presence of multinucleated giant cells in seminiferous tubules of both type 1 and type 2 PRRSV-infected boars. The distribution of PRRSV-positive cells was focal; the virus was found in single germ cells or small clusters of germ cells, localized to the spermatogonia, spermatocytes, spermatids, and non-sperm cells in type 1 and type 2 PRRSV-infected boars. Conclusions : The results of this study demonstrated that two genotypes of PRRSV do not have significantly different virulence toward the male reproductive system of pigs.This research was supported by contract research funds of the Research Institute for Veterinary Science (RIVS) from the College of Veterinary Medicine and by Brain Korea 21 Program for Veterinary Science in the Republic of Korea.Peer Reviewe

    Cardiovascular events and safety outcomes associated with remdesivir using a World Health Organization international pharmacovigilance database

    Get PDF
    On October 2020, the US Food and Drug Administration (FDA) approved remdesivir as the first drug for the treatment of coronavirus disease 2019 (COVID-19), increasing remdesivir prescriptions worldwide. However, potential cardiovascular (CV) toxicities associated with remdesivir remain unknown. We aimed to characterize the CV adverse drug reactions (ADRs) associated with remdesivir using VigiBase, an individual case safety report database of the World Health Organization (WHO). Disproportionality analyses of CV-ADRs associated with remdesivir were performed using reported odds ratios and information components. We conducted in vitro experiments using cardiomyocytes derived from human pluripotent stem cell cardiomyocytes (hPSC-CMs) to confirm cardiotoxicity of remdesivir. To distinguish drug-induced CV-ADRs from COVID-19 effects, we restricted analyses to patients with COVID-19 and found that, after adjusting for multiple confounders, cardiac arrest (adjusted odds ratio [aOR]: 1.88, 95% confidence interval [CI]: 1.08–3.29), bradycardia (aOR: 2.09, 95% CI: 1.24–3.53), and hypotension (aOR: 1.67, 95% CI: 1.03–2.73) were associated with remdesivir. In vitro data demonstrated that remdesivir reduced the cell viability of hPSC-CMs in time- and dose-dependent manners. Physicians should be aware of potential CV consequences following remdesivir use and implement adequate CV monitoring to maintain a tolerable safety margin

    Effect of porcine circovirus type 2 (PCV2) vaccination on PCV2-viremic piglets after experimental PCV2 challenge

    Get PDF
    International audienceThe objective of this study was to evaluate the effect of porcine circovirus type 2 (PCV2) vaccines on PCV2-viremic and -seropositive piglets born from naturally PCV2-infected sows against postnatal PCV2 challenge. The experimental design was aimed at mimicking commercial swine rearing conditions to evaluate the response of the PCV2 vaccine on PCV2-viremic and -seropositive piglets after experimental PCV2 challenge. PCV2a (or 2b)-viremic piglets received a PCV2 vaccine at 21 days of age followed by a PCV2b (or 2a) challenge at 49 days of age (28 days post vaccination). The PCV2 vaccines elicited a high level of humoral (as measured by immunoperoxidase monolayer assay and neutralizing antibody titers) and cellular (as measured by the frequency of PCV2-specific interferon-γ-secreting cells) immune response in the PCV2-viremic piglets after vaccination even in the presence of maternally derived antibodies (MDA). The initial infection of PCV2 in the pigs was not affected by PCV2 vaccination, however the challenging PCV2 was reduced by PCV2 vaccination on PCV2-viremic pigs. The results from this study demonstrate that the PCV2 vaccine used in this study is effective at reducing PCV2 viremia and lymphoid PCV2 DNA, even for PCV2-viremic pigs with passively acquired MDA at the time of vaccination

    Vaccination of sows against type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) before artificial insemination protects against type 2 PRRSV challenge but does not protect against type 1 PRRSV challenge in late gestation

    Get PDF
    International audienceThe objective of the present study was to determine the effects of the commercially available type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)-based modified live vaccine against type 1 and type 2 PRRSV challenge in pregnant sows. Half of the sows in the study were vaccinated with a type 2 PRRSV-based vaccine 4 weeks prior to artificial insemination while the other half remained non-vaccinated. Sows were then challenged intranasally with type 1 or type 2 PRRSV at 93 days of gestation. The sows which received the type 2 PRRSV-based vaccine followed by type 2 PRRSV challenge had significantly higher neutralizing antibody titers against type 2 PRRSV than they did against type 1 PRRSV. These same sows had higher frequencies of IFN-γ-secreting cells when stimulated with type 2 PRRSV compared to those stimulated with type 1 PRRSV. Subsequent virological evaluation demonstrated that the type 2 PRRSV-based vaccine reduced the type 2 PRRSV load but not the type 1 PRRSV load present in the blood of the sows. Additionally, vaccination of pregnant sows with the type 2 PRRSV-based vaccine effectively reduced the level of type 2 PRRSV nucleic acids observed in fetal tissues from type 2 PRRSV-challenged sows but did not reduce the level of type 1 PRRSV nucleic acid observed in fetal tissues from type 1 PRRSV-challenged sows. This study demonstrates that the vaccination of pregnant sows with the type 2 PRRSV-based vaccine protects against type 2 PRRSV challenge but does not protect against type 1 PRRSV challenge

    Reduction of porcine circovirus type 2 (PCV2) viremia by a reformulated inactivated chimeric PCV1-2 vaccine-induced humoral and cellular immunity after experimental PCV2 challenge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of the present study was to elucidate the humoral and cellular immune response mechanisms by which a reformulated inactivated chimeric PCV1-2 vaccine reduces the PCV2 viremia. Forty PCV2 seronegative 3-week-old pigs were randomly divided into the following four groups: vaccinated challenged (T01), vaccinated non-challenged (T02), non-vaccinated challenged (T03), and non-vaccinated non-challenged (T04) animals. The pigs in groups T01 and T02 were immunized with a reformulated inactivated chimeric PCV1-2 vaccine (Fostera™ PCV; Pfizer Animal Health) administered as a 2.0 ml dose at 21 days of age. At 35 days of age (0 days post-challenge), the pigs in groups T01 and T03 were inoculated intranasally with 2 ml each of PCV2b.</p> <p>Results</p> <p>A reduction of PCV2 viremia coincided with the appearance of both PCV2-specific neutralizing antibodies (NA) and interferon-γ-secreting cells (IFN-γ-SCs) in the vaccinated animals. However, the presence of anti-PCV2 IgG antibodies did not correlate with the reduction of PCV2 viremia. Lymphocyte subset analysis indicated that the numbers of CD3<sup>+</sup> and CD4<sup>+</sup> cells increased in vaccinated animals but the numbers of CD4<sup>+</sup> cells decreased transiently in non-vaccinated animals. The observation of a delayed type hypersensitivity response in only the vaccinated animals also supports a CD4<sup>+</sup> cell-associated protective cellular immune response induced by the reformulated inactivated chimeric PCV1-2 vaccine.</p> <p>Conclusions</p> <p>The induction of PCV2-specific NA and IFN-γ-SCs, and CD4<sup>+</sup> cells by the reformulated inactivated chimeric PCV1-2 vaccine is the important protective immune response leading to reduction of the PCV2 viremia and control of the PCV2 infection. To our knowledge this is the first demonstration of protective humoral and cellular immunity induced by the reformulated inactivated chimeric PCV1-2 vaccine and its effect on reduction of PCV2 viremia by vaccination.</p

    Capsiate Intake with Exercise Training Additively Reduces Fat Deposition in Mice on a High-Fat Diet, but Not without Exercise Training

    No full text
    While exercise training (ET) is an efficient strategy to manage obesity, it is recommended with a dietary plan to maximize the antiobesity functions owing to a compensational increase in energy intake. Capsiate is a notable bioactive compound for managing obesity owing to its capacity to increase energy expenditure. We aimed to examine whether the antiobesity effects of ET can be further enhanced by capsiate intake (CI) and determine its effects on resting energy expenditure and metabolic molecules. Mice were randomly divided into four groups (n = 8 per group) and fed high-fat diet. Mild-intensity treadmill ET was conducted five times/week; capsiate (10 mg/kg) was orally administered daily. After 8 weeks, resting metabolic rate and metabolic molecules were analyzed. ET with CI additively reduced the abdominal fat rate by 18% and solely upregulated beta-3-adrenoceptors in adipose tissue (p = 0.013) but did not affect the metabolic molecules in skeletal muscles. Surprisingly, CI without ET significantly increased the abdominal fat rate (p = 0.001) and reduced energy expenditure by 9%. Therefore, capsiate could be a candidate compound for maximizing the antiobesity effects of ET by upregulating beta-3-adrenoceptors in adipose tissue, but CI without ET may not be beneficial in managing obesity

    Evaluation of monoclonal antibody–based immunohistochemistry for the detection of European and North American \u3ci\u3ePorcine reproductive and respiratory syndrome virus\u3c/i\u3e and a comparison with in situ hybridization and reverse transcription polymerase chain reaction

    Get PDF
    The objective of the present study was to compare the ability of 2 monoclonal antibodies (mAbs; SDOW17 and SR30) to detect types 1 and 2 Porcine reproductive and respiratory syndrome virus (PRRSV) in formalin-fixed, paraffin-embedded (FFPE) lung tissues by immunohistochemistry (IHC) and to compare the immunohistochemical results with in situ hybridization (ISH) and reverse transcription nested polymerase chain reaction (RT-nPCR) detection techniques. Lungs from 30 experimentally infected pigs (15 pigs with each genotype of PRRSV) and 20 naturally infected pigs (10 pigs with each genotype of PRRSV) with types 1 and 2 PRRSV, respectively, were used for the IHC, ISH, and RTnPCR analyses. The SR30 mAb-based IHC detected significantly more type 1 PRRSV-positive cells in the accessory and caudal lobes from the experimentally infected pigs at 7 (P = 0.025) and 14 (P = 0.018) days postinoculation, respectively, compared to the SDOW17 mAb-based IHC. The results demonstrated that SR30 mAb-based IHC is useful for detecting both types 1 and 2 PRRSV antigen in FFPE lung tissues

    Improved Pharmacokinetic Feasibilities of Mirabegron-1,2-Ethanedisulfonic Acid, Mirabegron-1,5-Naphthalenedisulfonic Acid, and Mirabegron-L-Pyroglutamic Acid as Co-Amorphous Dispersions in Rats and Mice

    No full text
    Mirabegron (MBR) is a β3-adrenoceptor agonist used for treating overactive bladder syndrome. Due to its poor solubility and low bioavailability (F), the development of novel MBR formulations has garnered increasing attention. Recently, co-amorphous dispersions of MBR, such as MBR-1,2-ethanedisulfonic acid (MBR-EFA), MBR-1,5-naphthalenedisulfonic acid (MBR-NDA), and MBR-L-pyroglutamic acid (MBR-PG), have been developed, showing improved solubility and thermodynamic stability. Nevertheless, the pharmacokinetic feasibility of these co-amorphous dispersions has not been evaluated. Therefore, this study aimed to characterize the pharmacokinetic profiles of MBR-EFA, MBR-NDA, and MBR-PG in rats and mice. Our results exhibited that relative F24h and AUC0–24h values of MBR in MBR-EFA, MBR-NDA, and MBR-PG rats were increased by 143–195% compared with the MBR rats. The absolute F24h, relative F24h, and AUC0–24h values of MBR in MBR-EFA and MBR-NDA mice were enhanced by 178–234% compared with the MBR mice. In tissue distribution, MBR was extensively distributed in the gastrointestinal tract, liver, kidneys, lung, and heart of mice. Notably, MBR distribution in the liver, kidneys, and lung was considerably high in MBR-EFA, MBR-NDA, or MBR-PG mice compared with MBR mice. These findings highlight the potential of these co-amorphous dispersions to enhance oral F of MBR
    corecore