77 research outputs found

    Detection of Outliers in Time Series Data

    Get PDF
    This thesis presents the detection of time series outliers. The data set used in this work is provided by the GasDay Project at Marquette University, which produces mathematical models to predict the consumption of natural gas for Local Distribution Companies (LDCs). Flow with no outliers is required to develop and train accurate models. GasDay is using statistical approaches motivated by normally distributed samples such as the 3 -sigma rule and the 5 -sigma rule to aid the experts in detecting outliers in residuals from the models. However, the Jarque-Bera statistical test shows that the residuals from the GasDay models are not normally distributed. We present an explanation of Density Based Spatial Clustering of Applications with Noise (DBSCAN) and how it is used to detect time series outliers. We have introduced a new application for the DBSCAN algorithm by adapting it to detect outliers in natural gas flow. The performance of DBSCAN is compared with GasDay\u27s existing technique. Five data sets from temperature-sensitive operating areas with identified outliers and 1000 data sets with synthetic outliers are used in the evaluation process. The 1000 synthetic data sets are prepared using the same empirical distribution as one of the identified data set. This work indicates that DBSCAN has shown some improvement in detecting outliers over GasDays existing technique and merits further exploration

    Bioinformatics Systems And Mathematical Models For Improved Understanding Of Malaria Transmission, Control, And Elimination

    Get PDF
    The leading malaria vector control strategies (i.e., long-lasting insecticidal nets and indoor residual spraying) can reduce indoor transmission, but these tools alone are insufficient to eliminate it. Strategies that target adult mosquitoes when they feed on humans or animals outdoors or target mosquito immature stages are also needed to achieve malaria elimination. Improved data systems for integrating diverse experimental observations and research groups, as well as process-explicit mathematical models for evaluating them are both essential to achieving these goals. We have developed a generic schema and data repositories for the studies of malaria vectors that encompass a wide variety of different experimental designs that rapidly generate large data volumes. We extended a malaria transmission model to examine the relationship between transmission, control, and the proportion of blood meals a vector population obtains from humans: Assuming the lower limit for this indicator of human feeding preference enabled derivation of simplified models for zoophagic vectors. We present differential equation models to describe the biological processes that mediate novel strategies to control malaria vectors by autodissemination of pyripoxyfen (PPF) as it is transferred from treated stations to the gravid mosquitoes and then to the aquatic habitats where it inhibits mosquito emergence. Data from most of the mosquito studies we reviewed conformed to our generic schema with four tables recording the experimental design, sorting of collections, details of samples, and additional observations. Our corresponding online repository includes 20 experiments, 8 projects, and 15 users at two institutes, resulting in 10 peer-reviewed publications. For zoophagic vectors, the results from model can be used to forecast the likely immediate and delayed impacts of an intervention using only three field-measurable parameters. For the autodissemination of PPF, sensitivity analysis indicates success of the strategy is plausible because the ≥ 80% coverage of aquatic habitats with PPF appears achievable with modest, biologically plausible values of field-measurable input parameters. Therefore, we have applied two of the computational sciences aspects (i.e., research data preparation using computer systems and scenario analysis with mathematical models) to address obstacles to the control and elimination of malaria

    Biologically meaningful coverage indicators for eliminating malaria transmission.

    Get PDF
    Mosquitoes, which evade contact with long-lasting insecticidal nets and indoor residual sprays, by feeding outdoors or upon animals, are primary malaria vectors in many tropical countries. They can also dominate residual transmission where high coverage of these front-line vector control measures is achieved. Complementary strategies, which extend insecticide coverage beyond houses and humans, are required to eliminate malaria transmission in most settings. The overwhelming diversity of the world's malaria transmission systems and optimal strategies for controlling them can be simply conceptualized and mapped across two-dimensional scenario space defined by the proportion of blood meals that vectors obtain from humans and the proportion of human exposure to them which occurs indoors

    Why lockdown? Why national unity? Why global solidarity? Simplified arithmetic tools for decision-makers, health professionals, journalists and the general public to explore containment options for the 2019 novel coronavirus

    Get PDF
    As every country in the world struggles with the ongoing COVID-19 pandemic, it is essential that as many people as possible understand the epidemic containment, elimination and exclusion strategies required to tackle it. Simplified arithmetic models of COVID-19 transmission, control and elimination are presented in user-friendly Shiny and Excel formats that allow non-specialists to explore, query, critique and understand the containment decisions facing their country and the world at large. Although the predictive model is broadly applicable, the simulations presented are based on parameter values representative of the United Republic of Tanzania, which is still early enough in its epidemic cycle and response to avert a national catastrophe. The predictions of these models illustrate (1) why ambitious lock-down interventions to crush the curve represent the only realistic way for individual countries to contain their national-level epidemics before they turn into outright catastrophes, (2) why these need to be implemented so early, so stringently and for such extended periods, (3) why high prevalence of other pathogens causing similar symptoms to mild COVID-19 precludes the use of contact tracing as a substitute for lock down interventions to contain and eliminate epidemics, (4) why partial containment strategies intended to merely flatten the curve, by maintaining epidemics at manageably low levels, are grossly unrealistic, and (5) why local elimination may only be sustained after lock down ends if imported cases are comprehensively excluded, so international co-operation to conditionally re-open trade and travel between countries certified as free of COVID-19 represents the best strategy for motivating progress towards pandemic eradication at global level. The three sequential goals that every country needs to emphatically embrace are contain, eliminate and exclude. As recently emphasized by the World Health Organization, success will require widespread genuine national unity and unprecedented global solidarity

    Age grading \u3cem\u3eAn. gambiae\u3c/em\u3e and \u3cem\u3eAn. arabiensis\u3c/em\u3e using near infrared spectra and artificial neural networks

    Get PDF
    Background Near infrared spectroscopy (NIRS) is currently complementing techniques to age-grade mosquitoes. NIRS classifies lab-reared and semi-field raised mosquitoes into \u3c or ≥ 7 days old with an average accuracy of 80%, achieved by training a regression model using partial least squares (PLS) and interpreted as a binary classifier. Methods and findings We explore whether using an artificial neural network (ANN) analysis instead of PLS regression improves the current accuracy of NIRS models for age-grading malaria transmitting mosquitoes. We also explore if directly training a binary classifier instead of training a regression model and interpreting it as a binary classifier improves the accuracy. A total of 786 and 870 NIR spectra collected from laboratory reared An. gambiae and An. arabiensis, respectively, were used and pre-processed according to previously published protocols. The ANN regression model scored root mean squared error (RMSE) of 1.6 ± 0.2 for An. gambiae and 2.8 ± 0.2 for An. arabiensis; whereas the PLS regression model scored RMSE of 3.7 ± 0.2 for An. gambiae, and 4.5 ± 0.1 for An. arabiensis. When we interpreted regression models as binary classifiers, the accuracy of the ANN regression model was 93.7 ± 1.0% for An. gambiae, and 90.2 ± 1.7% for An. arabiensis; while PLS regression model scored the accuracy of 83.9 ± 2.3% for An. gambiae, and 80.3 ± 2.1% for An. arabiensis. We also find that a directly trained binary classifier yields higher age estimation accuracy than a regression model interpreted as a binary classifier. A directly trained ANN binary classifier scored an accuracy of 99.4 ± 1.0 for An. gambiae and 99.0 ± 0.6% for An. arabiensis; while a directly trained PLS binary classifier scored 93.6 ± 1.2% for An. gambiae and 88.7 ± 1.1% for An. arabiensis. We further tested the reproducibility of these results on different independent mosquito datasets. ANNs scored higher estimation accuracies than when the same age models are trained using PLS. Regardless of the model architecture, directly trained binary classifiers scored higher accuracies on classifying age of mosquitoes than regression models translated as binary classifiers. Conclusion We recommend training models to estimate age of An. arabiensis and An. gambiae using ANN model architectures (especially for datasets with at least 70 mosquitoes per age group) and direct training of binary classifier instead of training a regression model and interpreting it as a binary classifier

    A New Test of a Theory about Old Mosquitoes

    Get PDF
    In vector control, it is widely accepted that killing adult mosquitoes would sharply reduce the proportion of old mosquitoes and cause the greatest changes to malaria transmission. The principle is based on a mathematical model of the sporozoite rate (the proportion of infective mosquitoes) that emphasized changes in mosquito age. Killing adult mosquitoes also reduces mosquito population densities, which are directly proportional to human biting rates (the number of bites, per person, per day). Eect sizes of vector control can be compared using sporozoite rates and human biting rates, which are commonly measured. We argue that human biting rates convey more use- ful information for planning, monitoring and evaluating vector control, and operational research should focus on understanding mosquito ecology

    Effective autodissemination of pyriproxyfen to breeding sites by the exophilic malaria vector Anopheles arabiensis in semi-field settings in Tanzania

    Get PDF
    BACKGROUND Malaria vector control strategies that target adult female mosquitoes are challenged by the emergence of insecticide resistance and behavioural resilience. Conventional larviciding is restricted by high operational costs and inadequate knowledge of mosquito-breeding habitats in rural settings that might be overcome by the juvenile hormone analogue, Pyriproxyfen (PPF). This study assessed the potential for Anopheles arabiensis to pick up and transfer lethal doses of PPF from contamination sites to their breeding habitats (i.e. autodissemination of PPF). METHODS A semi-field system (SFS) with four identical separate chambers was used to evaluate PPF-treated clay pots for delivering PPF to resting adult female mosquitoes for subsequent autodissemination to artificial breeding habitats within the chambers. In each chamber, a tethered cow provided blood meals to laboratory-reared, unfed female An. arabiensis released in the SFS. In PPF-treated chambers, clay pot linings were dusted with 0.2 - 0.3 g AI PPF per pot. Pupae were removed from the artificial habitats daily, and emergence rates calculated. Impact of PPF on emergence was determined by comparing treatment with an appropriate control group. RESULTS Mean (95%CI) adult emergence rates were (0.21 +/- 0.299) and (0.95 +/- 0.39) from PPF-treated and controls respectively (p < 0.0001). Laboratory bioassay of water samples from artificial habitats in these experiments resulted in significantly lower emergence rates in treated chambers (0.16 +/- 0.23) compared to controls 0.97 +/- 0.05) (p < 0.0001). In experiments where no mosquitoes introduced, there were no significant differences between control and treatment, indicating that transfer of PPF to breeding sites only occurred when mosquitoes were present; i.e. that autodissemination had occurred. Treatment of a single clay pot reduced adult emergence in six habitats to (0.34 +/- 0.13) compared to (0.98 +/- 0.02) in the controls (p < 0.0001), showing a high level of habitats coverage amplification of the autodissemination event. CONCLUSION The study provides proof of principle for the autodissemination of PPF to breeding habitats by malaria vectors. These findings highlight the potential for this technique for outdoor control of malaria vectors and call for the testing of this technique in field trials

    Predicting Scenarios for Successful Autodissemination of Pyriproxyfen by Malaria Vectors from Their Resting Sites to Aquatic Habitats; Description and Simulation Analysis of a Field-Parameterizable Model

    Get PDF
    Background Large-cage experiments indicate pyriproxifen (PPF) can be transferred from resting sites to aquatic habitats by Anopheles arabiensis - malaria vector mosquitoes to inhibit emergence of their own offspring. PPF coverage is amplified twice: (1) partial coverage of resting sites with PPF contamination results in far higher contamination coverage of adult mosquitoes because they are mobile and use numerous resting sites per gonotrophic cycle, and (2) even greater contamination coverage of aquatic habitats results from accumulation of PPF from multiple oviposition events. Methods and Findings Deterministic mathematical models are described that use only field-measurable input parameters and capture the biological processes that mediate PPF autodissemination. Recent successes in large cages can be rationalized, and the plausibility of success under full field conditions can be evaluated a priori. The model also defines measurable properties of PPF delivery prototypes that may be optimized under controlled experimental conditions to maximize chances of success in full field trials. The most obvious flaw in this model is the endogenous relationship that inevitably occurs between the larval habitat coverage and the measured rate of oviposition into those habitats if the target mosquito species is used to mediate PPF transfer. However, this inconsistency also illustrates the potential advantages of using a different, non-target mosquito species for contamination at selected resting sites that shares the same aquatic habitats as the primary target. For autodissemination interventions to eliminate malaria transmission or vector populations during the dry season window of opportunity will require comprehensive contamination of the most challenging subset of aquatic habitats that persist or retain PPF activity (Ux) for only one week , where Ux = 7 days). To achieve >99% contamination coverage of these habitats will necessitate values for the product of the proportional coverage of the ovipositing mosquito population with PPF contamination (CM) by the ovitrap-detectable rates of oviposition by wild mosquitoes into this subset of habitats , divided by the titre of contaminated mosquitoes required to render them unproductive , that approximately approach unity . Conclusions The simple multiplicative relationship between CM and , and the simple exponential decay effect they have upon uncontaminated aquatic habitats, allows application of this model by theoreticians and field biologists alike

    Simplified Models of Vector Control Impact upon Malaria Transmission by Zoophagic Mosquitoes

    Get PDF
    BACKGROUND\ud \ud High coverage of personal protection measures that kill mosquitoes dramatically reduce malaria transmission where vector populations depend upon human blood. However, most primary malaria vectors outside of sub-Saharan Africa can be classified as "very zoophagic," meaning they feed occasionally (<10% of blood meals) upon humans, so personal protection interventions have negligible impact upon their survival.\ud \ud METHODS AND FINDINGS\ud \ud We extended a published malaria transmission model to examine the relationship between transmission, control, and the baseline proportion of bloodmeals obtained from humans (human blood index). The lower limit of the human blood index enables derivation of simplified models for zoophagic vectors that (1) Rely on only three field-measurable parameters. (2) Predict immediate and delayed (with and without assuming reduced human infectivity, respectively) impacts of personal protection measures upon transmission. (3) Illustrate how appreciable indirect communal-level protection for non-users can be accrued through direct personal protection of users. (4) Suggest the coverage and efficacy thresholds required to attain epidemiological impact. The findings suggest that immediate, indirect, community-wide protection of users and non-users alike may linearly relate to the efficacy of a user's direct personal protection, regardless of whether that is achieved by killing or repelling mosquitoes. High protective coverage and efficacy (≥80%) are important to achieve epidemiologically meaningful impact. Non-users are indirectly protected because the two most common species of human malaria are strict anthroponoses. Therefore, the small proportion of mosquitoes that are killed or diverted while attacking humans can represent a large proportion of those actually transmitting malaria.\ud \ud CONCLUSIONS\ud \ud Simplified models of malaria transmission by very zoophagic vectors may be used by control practitioners to predict intervention impact interventions using three field-measurable parameters; the proportion of human exposure to mosquitoes occurring when an intervention can be practically used, its protective efficacy when used, and the proportion of people using it

    Attacking the mosquito on multiple fronts: insights from the vector control optimization model (VCOM) for malaria elimination

    Get PDF
    Despite great achievements by insecticide-treated nets (ITNs) and indoor residual spraying (IRS) in reducing malaria transmission, it is unlikely these tools will be sufficient to eliminate malaria transmission on their own in many settings today. Fortunately, field experiments indicate that there are many promising vector control interventions that can be used to complement ITNs and/or IRS by targeting a wide range of biological and environmental mosquito resources. The majority of these experiments were performed to test a single vector control intervention in isolation; however, there is growing evidence and consensus that effective vector control with the goal of malaria elimination will require a combination of interventions.; We have developed a model of mosquito population dynamic to describe the mosquito life and feeding cycles and to optimize the impact of vector control intervention combinations at suppressing mosquito populations. The model simulations were performed for the main three malaria vectors in sub-Saharan Africa, Anopheles gambiae s.s, An. arabiensis and An. funestus. We considered areas having low, moderate and high malaria transmission, corresponding to entomological inoculation rates of 10, 50 and 100 infective bites per person per year, respectively. In all settings, we considered baseline ITN coverage of 50% or 80% in addition to a range of other vector control tools to interrupt malaria transmission. The model was used to sweep through parameters space to select the best optimal intervention packages. Sample model simulations indicate that, starting with ITNs at a coverage of 50% (An. gambiae s.s. and An. funestus) or 80% (An. arabiensis) and adding interventions that do not require human participation (e.g. larviciding at 80% coverage, endectocide treated cattle at 50% coverage and attractive toxic sugar baits at 50% coverage) may be sufficient to suppress all the three species to an extent required to achieve local malaria elimination.; The Vector Control Optimization Model (VCOM) is a computational tool to predict the impact of combined vector control interventions at the mosquito population level in a range of eco-epidemiological settings. The model predicts specific combinations of vector control tools to achieve local malaria elimination in a range of eco-epidemiological settings and can assist researchers and program decision-makers on the design of experimental or operational research to test vector control interventions. A corresponding graphical user interface is available for national malaria control programs and other end users
    corecore