
RESEARCH ARTICLE

Attacking the mosquito on multiple fronts:

Insights from the Vector Control Optimization

Model (VCOM) for malaria elimination

Samson S. Kiware1,2*, Nakul Chitnis3,4, Allison Tatarsky5, Sean Wu6, Héctor Manuel
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Abstract

Background

Despite great achievements by insecticide-treated nets (ITNs) and indoor residual spraying

(IRS) in reducing malaria transmission, it is unlikely these tools will be sufficient to eliminate

malaria transmission on their own in many settings today. Fortunately, field experiments

indicate that there are many promising vector control interventions that can be used to com-

plement ITNs and/or IRS by targeting a wide range of biological and environmental mos-

quito resources. The majority of these experiments were performed to test a single vector

control intervention in isolation; however, there is growing evidence and consensus that

effective vector control with the goal of malaria elimination will require a combination of

interventions.

Method and findings

We have developed a model of mosquito population dynamic to describe the mosquito life

and feeding cycles and to optimize the impact of vector control intervention combinations at

suppressing mosquito populations. The model simulations were performed for the main

three malaria vectors in sub-Saharan Africa, Anopheles gambiae s.s, An. arabiensis and

An. funestus. We considered areas having low, moderate and high malaria transmission,

corresponding to entomological inoculation rates of 10, 50 and 100 infective bites per person

per year, respectively. In all settings, we considered baseline ITN coverage of 50% or 80%

in addition to a range of other vector control tools to interrupt malaria transmission. The

model was used to sweep through parameters space to select the best optimal intervention

packages. Sample model simulations indicate that, starting with ITNs at a coverage of 50%

(An. gambiae s.s. and An. funestus) or 80% (An. arabiensis) and adding interventions that

PLOS ONE | https://doi.org/10.1371/journal.pone.0187680 December 1, 2017 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Kiware SS, Chitnis N, Tatarsky A, Wu S,

Castellanos HMS, Gosling R, et al. (2017) Attacking

the mosquito on multiple fronts: Insights from the

Vector Control Optimization Model (VCOM) for

malaria elimination. PLoS ONE 12(12): e0187680.

https://doi.org/10.1371/journal.pone.0187680

Editor: Pedro L. Oliveira, Universidade Federal do

Rio de Janeiro, BRAZIL

Received: May 21, 2017

Accepted: October 24, 2017

Published: December 1, 2017

Copyright: © 2017 Kiware et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: SSK acknowledges financial support

from a Wellcome Trust Training Fellowship grant #

107599/Z/15/Z. HS and JM acknowledges financial

support from UC-MEXUS grant. This work was

supported by the University of California, San

Francisco, Group Health Group Malaria Elimination

Initiative through funding from The Parker

Foundation. The funders had no role in study

https://doi.org/10.1371/journal.pone.0187680
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187680&domain=pdf&date_stamp=2017-12-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187680&domain=pdf&date_stamp=2017-12-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187680&domain=pdf&date_stamp=2017-12-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187680&domain=pdf&date_stamp=2017-12-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187680&domain=pdf&date_stamp=2017-12-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187680&domain=pdf&date_stamp=2017-12-01
https://doi.org/10.1371/journal.pone.0187680
http://creativecommons.org/licenses/by/4.0/


do not require human participation (e.g. larviciding at 80% coverage, endectocide treated

cattle at 50% coverage and attractive toxic sugar baits at 50% coverage) may be sufficient

to suppress all the three species to an extent required to achieve local malaria elimination.

Conclusion

The Vector Control Optimization Model (VCOM) is a computational tool to predict the impact

of combined vector control interventions at the mosquito population level in a range of eco-

epidemiological settings. The model predicts specific combinations of vector control tools to

achieve local malaria elimination in a range of eco-epidemiological settings and can assist

researchers and program decision-makers on the design of experimental or operational

research to test vector control interventions. A corresponding graphical user interface is

available for national malaria control programs and other end users.

Introduction

Despite great achievements by insecticide-treated nets (ITNs) [1] and indoor residual spraying

(IRS) [2] in reducing malaria transmission, modeling and empirical evidence demonstrate

that these tools are insufficient to eliminate malaria transmission in many settings today [3–6],

even when combined with treatment with antimalarial drugs such as artemisinin combination

therapies [7]. Protective coverage from indoor-based interventions is attenuated where mos-

quitoes can access blood resources from non-human hosts [8] or from humans when they are

outdoors [9].

Fortunately, field experiments indicate that there are many promising vector control inter-

ventions that are underutilized or emerging and can be used to complement ITNs and/or

IRS by targeting a wide range of biological and environmental mosquito resources [10]. The

majority of these experiments were performed to test a single vector control intervention in

isolation (or with ITNs and/or IRS); however, there is growing evidence and consensus that

effective vector control will require a combination of interventions tailored to specific ecologi-

cal and epidemiological settings [7, 10, 11].

We present a mathematical model that incorporates all stages of the mosquito life cycle

from egg to larva, pupa and adult and, crucially, the female gonotrophic cycle whereby females

blood feed and lay eggs. The goal is to provide an optimal package of vector control interven-

tions required to reduce the entomological inoculation rate (EIR) to levels required for local

elimination [12] for the three main African malaria vectors (i.e. Anopheles gambiae s.s. [13],

An. arabiensis [14] and An. funestus [15]) in areas with low (EIR< 10 infective bites per person

per year (pppy)), moderate (EIR = 10 − 100 bites pppy) or high transmission (EIR > 100

bites pppy).

The model is used to evaluate the impact of combining existing and novel interventions

in synergistic ways in areas where ITNs and/or IRS are widely used but where malaria trans-

mission persists. We consider the following vector control interventions in addition to ITNs

and IRS: larviciding [16], attractive toxic sugar baits (ATSBs) [17], insecticide spraying of

male mating swarms [18], mosquito-proofed housing [19], spatial mosquito repellents and

other personal protection measures (e.g., topical repellents, insecticide-treated clothing)

[20, 21], systemic and topical insecticide-treated cattle [22], odor-baited traps [23, 24] and

space spraying [25]. Williams et al (Unpublished) provides a comprehensive review on the
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availability and quality of evidence of 22 vector control tools, including those included in

this analysis.

The model presented here is used to quantify the impact of optimal packages with realistic

intervention coverage on decreasing the mosquito feeding rate, reducing mosquito density,

reducing the proportion of blood-meals taken from humans, extending the length of the gono-

trophic cycle, reducing vectorial capacity, and reducing the basic reproduction number of the

malaria parasite, R0. The main model output used to assess the impact of intervention is the

entomological inoculation rate, EIR, which is the number of infectious bites per person per

unit time, usually measured or expressed per year. Vector control interventions need to reduce

EIRs to levels below 1 for a sustained period of time in order to interrupt malaria transmission

[12]. We present the most comprehensive vector control optimization model (VCOM) to date

that can be used by researchers and national malaria control programs (NMCPs) to develop

potential vector control intervention combinations that can be tested to achieve malaria elimi-

nation in a range of eco-epidemiological settings. The model framework will be a useful tool

in the selection of interventions for vector control trials and operational research and in the

design of trials themselves especially for novel techniques.

Methods

We developed a modeling framework known as Vector Control Optimization Model (VCOM)

to describe the population dynamics of mosquito vectors and to optimize the impact of combi-

nations of interventions for the control and elimination of malaria transmission. The model is

developed based on a compartmental model of mosquito life stages (i.e. progress from egg to

larva to pupa to adult) and malaria infection amongst adult female mosquitoes using a Suscep-

tible—Exposed—Infected/Infectious (SEI) framework. The human population is modeled

using a simple Susceptible—Infected/Infectious (SI) model. The mosquito ecology and ITN/

IRS models correspond to previous models [26–28] but with extensions to include a greater

number of vector control tools. Full details of the model equations are presented in S1 Appen-

dix and a schematic diagram representing the model is presented in Fig 1.

Mosquito ecology and transmission models

Briefly, for the mosquito ecological model: (1) each female mosquito lays on average β eggs per

day that hatch into early-instar larvae, E; (2) early-instar larvae are subject to density-dependent

Fig 1. Flow diagram for the mosquito ecological model, mosquito SEI model, and human SI model. E, Early Instar; L, Late Instar; P,

Pupae; Sv, Susceptible Vectors; Ev, Exposed Vectors, Iv, Infected Vectors; SH, Susceptible Humans; and IH, Infected Humans.

https://doi.org/10.1371/journal.pone.0187680.g001
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daily mortality at a rate μE and, if they survive, progress to late-instar larvae, L, after dE days; (3)

late-instar larvae undergo density-dependent daily mortality at a rate μL and, if they survive,

develop into pupae (P) after dL days; and (4) pupae undergo density-independent mortality at a

rate μP or develop into adults, half of which are assumed to be females at emergence, V, after dP

days.

S1 Appendix provides detailed equations to elaborate the mosquito life and feeding cycle

model, which describes the factors contributing to the rate at which female mosquitoes feed on

human and non-human hosts and lay eggs in the absence of interventions. Factors described

in the model include the time to complete one feeding cycle, the female mosquito death rate

and the total adult female mosquito population size, which is a function of density-dependent

competition at the larval stage and the carrying capacity of the environment for larvae. Malaria

infection is incorporated into the mosquito population dynamics by subdividing the adult

female mosquito population (V) into those susceptible (SV), latently infected (EV), and infec-

tious (IV) for the malaria parasite.

Once a susceptible mosquito bites an infectious human, then the mosquito moves into the

exposed/latently infected stage, EV, at a rate equivalent to the force of infection in vectors, λV.

After completing a latent infection period of fixed duration, τ = 1/γ, a fraction of mosquitoes,

e� mV t, survive this latent period to become infectious, IV. Here, μv represents the daily natural

mortality rate that adult female mosquitoes undergo, which is assumed to be the same inde-

pendent of infection status.

Malaria infection in the human population model

As we are focusing on the mosquito population dynamics, we describe malaria infection in the

human population using a simple susceptible-infectious (SI) model—a susceptible human (SH)

becomes infected (IH) at a rate equivalent to force of infection in humans, λH. Infected humans

are assumed to recover from infection at the human recovery rate, r.

The impact of interventions—Targeting mosquitoes when using their

resources

In order to achieve malaria elimination, strategies are needed that target mosquitoes when

they evade ITNs/IRS and feed on humans indoors, feed on animals or humans outdoors, or

while using one of the other biological or environmental resources they use, such as sugar,

mating sites, resting sites and oviposition sites. With this in mind, we extend the above model

to incorporate interventions that target mosquitoes both indoors and outdoors and at all stages

of the mosquito life and feeding cycles.

Upon emergence from eggs, female mosquitoes mate and sugar feed—life processes which

may be targeted by spraying of male swarms and ATSBs, respectively. The mosquito gono-

trophic cycle then follows, in which female mosquitoes start host-seeking—the process that

can be targeted by space spraying with insecticides and odor-baited traps—and then alternate

between blood-feeding (in order to support egg production) and egg-laying. There are multi-

ple options that female mosquitoes may pursue to obtain a blood meal: a) biting livestock,

which can be mitigated by treating livestock with endectocides (antiparasitic drugs that act as

a systemic insecticide) or spraying livestock with insecticides; b) biting humans outdoors,

against which humans can protect themselves with spatial repellents and other personal pro-

tection measures; and c) biting humans indoors, for which ITNs, IRS, spatial repellents and

mosquito-proofed housing are protective. After taking a blood-meal, female mosquitoes then

produce eggs and oviposit (lay eggs) in water. Effective interventions targeting this stage of

the life cycle include larviciding (conventional or aerial), biological control and larval source

Using mathematical models to optimize vector control tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0187680 December 1, 2017 4 / 19

https://doi.org/10.1371/journal.pone.0187680


reduction, since they all kill immature mosquito forms in aquatic habitats. Mosquitoes can

also be targeted while seeking humans, resting sites and oviposition sites using ovitraps,

ATSBs and space spraying with insecticides.

These interventions are modeled by the effects they have on diverting mosquitoes, which

increases the amount of time it takes for the gonotrophic cycle to be completed, and hence

decreases the mosquito feeding/biting rate. Other effects which are modeled are: a) the effect

of interventions on the mosquito daily mortality rate, which impacts the total mosquito

population size; and b) the effect of these interventions on reducing the human biting rate,

which is relevant for malaria transmission from both mosquito-to-human and human-to-

mosquito. We therefore describe different vector control interventions that can be used to

target mosquitoes while utilizing a given resource. The mathematics of the model detailed

follows from the schematic shown in Fig 2, highlighting several opportunities for vector

control.

In the next subsections, we describe briefly how each intervention is implemented. Full

mathematical details are provided in S1 Appendix, and a complete table of parameter defini-

tions and range of values used for model simulations are provided in Tables, A, B, and C in S2

Appendix.

Fig 2. Targeting the mosquito on multiple fronts. The schematic highlights opportunities for existing and novel vector control tools that

can be used to target mosquitoes both indoors and outdoors and at all stages of the mosquito life and feeding cycles. Synergy and layering

between interventions follows from this schematic diagram (Fig 2) and how all the interventions are encoded from it.

https://doi.org/10.1371/journal.pone.0187680.g002
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Targeting mosquitoes in aquatic habitats

We consider three interventions that can be used to target the immature mosquito forms and

eventually reduce the mosquito emergence rate—an effective vector control approach target-

ing all mosquito species regardless of their behavior. These are source reduction, larviciding,

and biological control.

The impact of source reduction in reducing environmental carrying capacity. Environ-

mental management through source reduction targeting mosquito aquatic stages complements

existing adult control measures well [29]. We incorporate the impact of source reduction in

the model by considering its impact on environmental carrying capacity, K. This impact is

modeled by considering the effectiveness of the source reduction approach used (e.g. drainage

of canals, eliminating ditches) and the proportion of aquatic habitats where source reduction

is implemented in reducing the value of K. As noted previously [30], source reduction is most

effective in urban or developed areas where it is easier to identify, map and treat mosquito

breeding sites.

The impact of larviciding and biological control in suppressing the immature mosquito

population. The impact of larviciding and biological control is modeled by the impact it has

on early instars, late instars, and pupae which reside in aquatic habitats where these interven-

tions are applied alone and/or in combination. The early and late instar and pupal stages–E, L
and P–are divided into El, Ebc, El,bc, Ll, Lbc, Ll,bc, Pl, Pbc and Pl,bc to represent immature stages in

breeding sites where larviciding and biological control [29] are applied alone and in combina-

tion for the three mosquito stages respectively (the subscript l represents larviciding alone, bc
represents biological control alone, l, bc represents both, and l, bc, 0 represent neither). The

effectiveness of each intervention at a given coverage is captured by its ability to increase the

death rate of immature forms by multiplying these by a factor allowing for increased death

rate due to biological control, zbc, or larviciding, zl. It is assumed that the two interventions act

independently to each other so that the impact of combined interventions is obtained by mul-

tiplying the two factors allowing for increased death rate together, i.e. zl zbc.

Targeting mosquitoes while mating

After emergence, female mosquitoes mate in flight with male mosquitoes, which normally

gather in swarms at specific mating sites over landmarks [18]. We can target male mosquito

swarms by increasing the male mosquito death rate using targeted space spray with insecti-

cides. As the number of adult male mosquitoes decreases, it becomes more difficult for adult

female mosquitoes to find a mate, and hence the egg-laying rate of adult females decreases. In

order to incorporate this intervention, we have used a simple sigmoidal function to describe

the relationship between the egg-laying rate of female mosquitoes and the ratio of male and

female adult mosquitoes.

Targeting mosquitoes while searching for blood

Mosquitoes can be targeted while host seeking by using ATSBs, space spraying and/or odor

baited traps. These interventions can all increase the mosquito death rate, hence decreasing

the probability of a mosquito surviving the host-seeking process and resulting in a decline in

the mosquito population size.

Estimating the impact of attractive toxic sugar baits and space spraying on host-seeking

mosquitoes. Mosquitoes feed frequently on plants and other sugar sources, providing an

opportunity to attract and kill them using ATSB-sprayed plants or other baits while host-seek-

ing outdoors. Sugar is a major source of energy for female mosquitoes and the sole energy

source for males [31, 32]. The impact of ATSBs on female mosquitoes is modeled by their
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ability to increase mosquito death rate by a known factor zATSB when mosquitoes feed on

ATSB-sprayed plants. On the other hand, space spraying can be used to target outdoor host-

seeking mosquitoes by increasing mosquito natural death rate by a factor, zSS. The impact of

these interventions is computed when each intervention is used alone or in combination

assuming independent coverage of each intervention.

Estimating population level effects of odor-baited traps. The efficacy of odor-baited

traps is derived primarily from two complementary characteristics: a) their high attractiveness

to mosquitoes compared to attractiveness of humans; and b) their ability to trap and kill mos-

quitoes which attack them hoping to obtain blood, thus removing these mosquitoes from the

host-seeking mosquito population [23, 24]. Thus, odor-baited traps also affect the probability

of a mosquito surviving the host-seeking process. The impact of odor-baited traps is modelled

by the impact it has in preventing a proportion of mosquito bites that would otherwise occur

on humans or non-human hosts. This is modeled by considering: a) the availability of one trap

in relation to one human, αt, and b) the ratio of traps to humans, rt.

Targeting mosquitoes while attempting to feed on humans indoors

We describe the impact of indoor interventions, specifically, insecticide treated nets (ITNs),

indoor residual spraying (IRS) and housing modification (HM), following the approach of Le

Menach et al. [27]. It is assumed that a mosquito can be killed when encountering ITNs or IRS

and repelled when encountering any of these three interventions. Repellency results in a longer

gonotrophic cycle and hence a slower egg-laying rate and consequently a smaller adult mos-

quito population size. All modelled house modifications are assumed to repel mosquitoes; but

the ability of housing modifications to kill mosquitoes depends on the type of housing modifi-

cation being implemented—for example houses with treated netting eave baffles are assumed

to both kill and repel mosquitoes.

For all three interventions, a mosquito can successfully feed with a given probability, s. The

impact of a house with a single intervention or combination of any of two or three is modeled

by the potential of the interventions to prevent mosquitoes from feeding by repelling or killing

them, as illustrated in Figure C in S1 Appendix. The impact of each intervention is computed,

on its own or in combination, assuming independent coverage of each. The impact is also

assumed to remain the same throughout the duration of the simulation. The proportion of

bites taken by a given vector species indoors is considered, and further divided into the pro-

portion of bites taken on people in bed and otherwise indoors.

Targeting mosquitoes while attempting to feed on humans when

outdoors

Mosquitoes attempting to bite humans outdoors can potentially be blocked from biting these

humans by spatial repellents and other personal protection measures (e.g. topical repellents

and insecticide-treated clothing). The impact of these interventions is computed when each

intervention is used alone or in combination, assuming independent coverage of each and its

potential to repel and prevent mosquitoes from feeding on unprotected humans outdoors.

Targeting mosquitoes while attempting to feed on non-human hosts

Several experiments [22, 33, 34] have indicated that endectocide-treated cattle can reduce

malaria transmission in humans. We explore the impact of systemic and/or topical insecticide

applied to cattle by increasing the mosquito mortality rate associated with insecticide contact

during blood-feeding from cattle. The impact of insecticide-treated cattle is modeled for inter-

ventions applied to cattle in isolation or combination.

Using mathematical models to optimize vector control tools
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Targeting mosquitoes while seeking resting sites, resting, and searching

for oviposition sites

Mosquitoes can be targeted while searching for resting or oviposition sites, and resting after

acquiring blood-meals, by ATSBs, space spraying (SS) and/or other traps (e.g. ovitraps). Each

of these interventions increases the mosquito death rate, in this case, during the second phase

of the gonotrophic cycle (after blood-feeding, before egg-laying). The impact of ATSBs on

female mosquitoes is modeled by their ability to increase mosquito death rate by a known fac-

tor, zATSB, when mosquitoes feed on ATSB-sprayed plants. Space spraying can be used to target

outdoor resting mosquitoes by increasing the natural death rate of mosquitoes by a factor of

zSS. Finally, ovitraps target ovipositing mosquitoes, hence they have two impacts on the mos-

quito population: a) increasing the adult female death by a factor zOT; and b) reducing the

number of viable eggs that a female mosquito lays per oviposition cycle.

Model output

We present all the primary and secondary model outputs that can be generated by the model

to assess the impact of combined interventions in different transmission settings. Mathemati-

cal details of the model outputs are also presented in S1 Appendix.

The impact of combined interventions on mosquito population parameters. We

assessed the impact of the above described interventions in terms of: a) extending the length

of gonotrophic cycle due to mosquitoes being repelled while attempting to feed on humans

indoors and outdoors and upon cattle; b) reducing the probability of mosquitoes surviving for

one day and hence increasing their death rate; c) reducing the number of viable eggs laid per

day per female mosquito by considering the number of viable eggs that a female mosquito lays

per oviposition cycle, the length of gonotrophic cycle and the mosquito daily death rate; d)

reducing the proportion of blood-meals obtained from humans by taking the ratio of success-

ful blood-meals taken upon humans over successful blood-meals on all hosts; and e) reducing

the human biting rate per mosquito by dividing the proportion of blood-meals obtained from

humans over the length of gonotrophic cycle.

Estimating the entomologic inoculation rate (EIR) in the presence of interventions.

The main model output is malaria transmission intensity, often expressed in terms of the ento-

mologic inoculation rate (EIR) which is a direct, practical indicator of human exposure to

bites of mosquitoes infected with transmissible sporozoite-stage malaria parasites. In other

words, EIR is the number of infectious bites per person per unit time, usually measured or

expressed per year. It is important for vector control interventions to sustainably reduce EIRs

to levels below 1 in order to interrupt malaria transmission [12, 35]. Therefore, the impact of

optimal intervention packages is modeled on their potential to reduce annual EIR below one.

Estimating vectorial capacity in the presence of interventions. Vectorial capacity is

another important parameter which can be used to estimate the risk of malaria introduction.

Dye [36] defines vectorial capacity as the daily rate at which future inoculations arise from

currently infective humans, assuming that all female mosquitoes biting that infected human

become infected. The model can also be used to assess the impact of combined intervention in

reducing the vectorial capacity.

Estimating the basic reproductive number in the presence of interventions. The last

model output is the basic reproductive number of the malaria parasite, R0, which represents

the number of new human infections that one human case introduces to a susceptible popula-

tion on average over the course of its infectious period, 1/r. R0 is an important indicator

because it specifies the threshold for continued disease transmission (i.e. if R0 < 1, the infec-

tion will disappear in the long run, and if R0 > 1, the infection will be able to spread in the

Using mathematical models to optimize vector control tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0187680 December 1, 2017 8 / 19

https://doi.org/10.1371/journal.pone.0187680


population). The higher the value of R0, the harder it is to control the infection in the popula-

tion [37]. Our model can be used to simulate combinations of interventions and specific cover-

age values and infer which combination interventions lead to values of R0 less than one.

Model simulations

The model simulations are implemented based on populations of Anopheles gambiae s.s., An.

arabiensis, and An. funestus mosquitoes. The model results presented here are obtained by

assessing the impact of combined interventions at different coverage levels in reducing

malaria transmission in areas with low (EIR < = 10), moderate (10 < EIR < = 100) and high

(EIR > 100) transmission to an extent required for local malaria elimination (i.e. to low values

of EIR required to interrupt malaria transmission such that R0 < 1). The model was used to

sweep through parameter space to predict combined interventions with specific coverage levels

that can be used to reduce annual EIR below 1 in a range of transmission settings noted above.

The model simulations for different intervention scenarios are run until equilibrium is reached

and the output values are reported at equilibrium.

Sensitivity analysis

We performed sensitivity analysis to determine which parameters have great influence on the

model output i.e., entomological inoculation rate, based on 50% coverage of ITNs, attractive

toxic sugar baits (ATSB), systemic (ECS) and topical (ECT) endectocide-treated cattle, mos-

quito-proofed housing (HOU), larviciding (LAR) and personal protection measure (PPM). The

same selected tools are used in providing sample model results as presented in the results sec-

tion. We have used the Latin Hypercube Sampling/Partial Rank Correlation Coefficient (LHS/

PRCC) sensitivity analysis approach to explore the entire parameter space of the model based

on the selected interventions with their corresponding parameter values. A wider range is

assigned to parameter values as presented in Table C in S2 Appendix where data is unavailable.

LHS/PRCC sensitivity analysis can identify and rank key parameters according to their

importance in contributing toward model prediction imprecision. The closer the absolute

value of the PRCC is to one for a particular parameter, the more influence that parameter has

on the model output. More details on LHS/PRCC sensitivity analysis approach can be found

here [38, 39]. To compute the PRCC values for our model, we use the implementation of LHS

and PRCC functions in R [40] version 3.2.4 –the parameter values used were drawn from a

uniform distribution. The functions were run on 1000 samples for a total of 40 parameters

based on the range of values given in Table B in S2 Appendix as minimum and maximum val-

ues required by the uniform distribution. As indicated in Figure C in S1 Appendix, probability

of mosquito being repelled upon encountering a mosquito proofed housing (rHOU) (A) and

insecticide treated nets (rITN) (A and B), a probability of feeding and surviving upon encoun-

tering a mosquito proofed housing (sHOU) (A) and a personal protection measure (sPPM) (A

and B), mosquito death rate while searching for blood (muV) (A), a proportion of mosquito

bites on a person while they are indoor (phiI) (A and B), a factor allowing for increased mos-

quito death rate due to ATSB (fATSB) (A and B), and a probability of feeding and surviving

upon encountering a topical endectocide-treated cattle (sECT)—all have the most influence on

the model output for An. gambiae s.s. and An. arabiensis as indicated in Fig 3 panels A and B.

Sensitivity analysis results for An. Funestus are represented in Figure D in S1 Appendix.

GUI/Software

VCOM’s graphical user interface (GUI) is freely available online (http://skiware.github.io/

VCOM/) for users to explore the impact of combination interventions of their own interest.
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Users are able to run simulations based on a given mosquito species, transmission setting and

choice of intervention(s). Advanced options are available to alter the parameter values of the

mosquito ecology and intervention models as desired. A short summary of the GUI is pro-

vided in S3 Appendix. The VCOM code is developed in R version 3.2.4 and the link to the

GitHub repository is provided in the GUI’s introduction page.

Results

The VCOM framework presented here is capable of exploring a range of eco-epidemiological

settings with differing transmission intensities, vector species and relative densities of non-

human hosts. In this section, we present limitations of the current indoor tools (i.e. ITNs and

IRS) and sample results on the optimal intervention packages incorporating ITNs required to

interrupt malaria transmission (i.e. to reduce annual EIRs to levels below 1) for a population of

Fig 3. Sensitivity analysis for vector control optimization model. Sensitivity analysis is performed using Latin Hypercube Sampling/

Partial Rank Correlation Coefficient (LHS/PRCC) sensitivity analysis approach based on the impact of selected vector control tools at 50%

coverage in reducing entomological inoculation rate for An. gambiae s.s. (A) and An. arabiensis (B). The names for parameters are given in

the second column titled “Key” of Table C in S2 Appendix.

https://doi.org/10.1371/journal.pone.0187680.g003
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Anopheles gambiae s.s., An. arabiensis and An. funestus mosquitoes in areas with low (EIR = 10),

moderate (EIR = 50) and high malaria transmission (EIR = 100).

ITNs or IRS alone are unlikely to eliminate malaria

Using mathematical models to evaluate the actual impact of ITNs based only on reported cov-

erage is challenging due several factors such as adherence to ITNs use, decay in insecticide

applied to ITNs effectiveness over time, insecticide-resistance among the local vector popula-

tion, and uncertainty regarding the actual coverage level of these interventions following roll-

out. Furthermore, models describing the impact of these interventions often overestimate

their impact as they are frequently parameterized based on successful field trials, which may

not be representative of all roll-out settings.

However, even given these overestimates of impact and setting the ITN coverage levels to

80%, the model indicates that it might be possible to interrupt malaria transmission with ITNs

alone in low transmission settings (baseline EIR of 10) for An. gambiae s.s. (Fig 4B) and An
funestus (Figure E panel B in S1 Appendix); but ITNs will be insufficient to interrupt transmis-

sion in moderate transmission settings (baseline EIR of 50) (Figs 3D and 4D and Figure E

panel D in S1 Appendix) and in high transmission settings (baseline EIR of 100) (Figs 4F and

5F and Figure E panel F in S1 Appendix) for any of the three malaria vectors. The model indi-

cates that it might not be possible to interrupt transmission with ITNs alone based on 50% for

any of the three vectors in any of the transmission settings—results depicting this are presented

in Figs 4 and 5 and Figure E in S1 Appendix in panels A, C, and E for ITN coverage at 50%.

Evaluating the impact of combining ITNs at 50% and 80% coverage with

additional tools to control An. gambiae s.s.

The model is used to investigate additional interventions to ITNs at 50% and 80% coverage

that would be successful in interrupting malaria transmission for vector populations predomi-

nated by An. gambiae s.s. in all the three transmission settings (Fig 4). Fig 4 shows equilibrium

values of EIR at 50% or 80% coverage of ITNs and after adding selected tools to areas with low

(A and B), moderate (C and D), and high (E and F) malaria transmissions. The box plot shows

the median, the interquartile ranges and the 95% confidence ranges of the EIR for different

parameter values shown on Fig 3 corresponding to either specific mosquito parameters and/or

vector control tools used to interrupt transmission.

As shown in Fig 4, adding one and even a second intervention at 50% coverage might not

be sufficient to interrupt high (panel E) or moderate transmission (panel C). On the other

hand, adding mosquito proofed housing (HOU) at 50% might be sufficient to interrupt low

(panel A) transmission against An. gambiae s.s. By scaling up ITNs to 80% coverage and then

adding any of the selected intervention at 50% should be sufficient to interrupt transmission

against An. gambiae s.s. in areas with low (panel B) malaria transmission. Only adding mos-

quito proofed housing seems to interrupt transmission in areas with high (panel F) and

moderate (panel D) malaria transmission. Equivalent model simulations performed for An.

funestus predict slightly different results presented in Figure E in S1 Appendix.

Evaluating the impact of combining ITNs at 80% coverage with

additional tools to control An. arabiensis

Simulations for An. arabiensis conducted with ITNs coverage at 50% indicate ITNs are much

less impactful against An. arabiensis due to their preference to feed on both humans and ani-

mals, and their proclivity to feed outdoors.
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We therefore opted for simulations with 80% ITNs coverage for An. arabiensis and addi-

tional interventions at either 50% coverage (Fig 5, panels A, C and E) or 80% coverage (Fig 5

panels B, D and F). Model results presented in Fig 5 suggest that, in most cases, adding one or

two tools at 50% coverage (in addition to ITNs at 80% coverage) might not be sufficient to

interrupt malaria transmission for An. arabiensis populations (Fig 5 panels A, C, and E).

Model predictions suggest that the most effective way to control An. arabiensis is to treat cattle

with insecticide and also target aquatic habitats with larviciding Fig 5 (panels B, D, and F)

while maintaining ITN coverage at 80%.

Fig 4. Evaluating the impact of combining ITNs at 50% and 80% coverage with additional tools against An. gambiae s.s. The tools

selected in this example are attractive toxic sugar baits (ATSB), topical (ECT) endectocide-treated cattle, mosquito-proofed housing (HOU),

larviciding (LAR) and personal protection measure (e.g. insecticide-treated clothing) (PPM). Adding one or two tools to ITNs at 50%

coverage might be sufficient to interrupt transmission in low transmission settings (A); but in most cases not sufficient in moderate (C) and

high transmission (E) settings. Scaling up ITNs to 80% coverage and adding another tool with 50% coverage might be sufficient to interrupt

transmission in low (B) transmission but not necessarily in moderate (D) and high (F) transmission settings unless the tool added is

mosquito proofed housing.

https://doi.org/10.1371/journal.pone.0187680.g004
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Evaluating the impact of combining ITNs at 50% coverage with

interventions not requiring human participation

We evaluated combining ITNs at 80% coverage with interventions that do not depend on

human participation. Considering that human participation can impede the impact of vector

control tools (e.g. people do not sleep under ITNs or refused to have their homes sprayed with

insecticide), we ran simulations including ITNs and additional selected interventions that tar-

get non-human hosts (endocticide-treated cattle), the larval habitat (i.e. larviciding) both at

80%, and sugar sources (i.e. ATSB) at 50%. As shown in Fig 6, adding larviciding at 80% to

ITNs at 50% might not be sufficient to interrupt transmission in high (EIR = 100) transmission

settings. This combination of interventions has the lowest impact on An. arabiensis (panel A)

Fig 5. Evaluating the impact of combining ITNs at 80% coverage with additional tools against An. arabiensis. Similar tools

presented in Fig 4 are presented here showing EIR values at equilibrium but with ITN coverage set to 80% and coverage with additional

vector control tools set to 50% in panels A, C and E and 80% panels B, D and F. Adding a tool or two is insufficient to interrupt transmission

in most cases for An. arabiensis in moderate and high transmission settings, except when larviciding or endocticide-treated cattle is added

(either alone or in combination).

https://doi.org/10.1371/journal.pone.0187680.g005
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given their feeding preferences mentioned above. Adding ATSB as the third intervention dra-

matically reduces transmission, and adding topical endectocide-treated cattle (ECT) is pre-

dicted to interrupt transmission for all the three studied species. Thus, the selected tools which

do not require human compliance are effective against all the three species. Since they are

effective in high transmission settings (baseline EIR of 100), they should also be effective in

low and moderate transmission settings for all the three studied species, even at the coverage

levels reported here.

Discussion

The model presented here can be used to examine optimal vector control intervention pack-

ages to support the design of operational and experimental research and implementation to

reduce and eliminate malaria transmission.

The findings from our analyses indicate that ITNs alone will likely be insufficient to inter-

rupt transmission, except with a predicated coverage of 80% in low transmission settings,

which is the hypothetical maximum level of coverage compared to the reported 55% coverage

in sub-Saharan Africa in 2015 [41]. More likely, interventions in addition to ITNs will be

required, especially for An. arabiensis, due to the vector’s proclivity to feed on non-human

hosts. Additional interventions including endectocide-treated cattle and larviciding were pre-

dicted to reduce An. arabiensis transmission to low levels. Importantly, we have presented

optimal intervention combinations with interventions not requiring human participation, lim-

iting the reliance on human adherence. As one would expect, the more interventions that were

added to each simulation, the lower the predicted transmission. That said, larviciding and

ATSBs and/or endectocide-treated livestock were predicted to have the most significant

impact on transmission across vector species and transmission intensity. However, achieving

high coverage (e.g., 80%) of larviciding using classic conventional method might be a very seri-

ous challenge and unlikely operation wise, hence, aerial larviciding might be an ideal alterna-

tive approach in reaching high coverage of aquatic habitats with larvicide.

The results from our model are similar to previous model simulations and field experi-

ments [7, 42–44]. In all cases, high coverage with indoor interventions has been reported to

be more effective against An. gambiae s.s. and An. funestus but not An. arabiensis. Also, the

Fig 6. Evaluating the impact of combining ITNs at 80% coverage with other interventions. This figure shows equilibrium values of EIR

simulated based on selected tools added to high transmission areas against An. arabiensis (A), An. gambiae (B), and An. funestus (C). The

box plot shows the median, the interquartile ranges and the 95% confidence ranges of the EIR for different parameter values shown on Fig 3

corresponding to either specific mosquito parameters and/or vector control tools used to interrupt transmission. Adding larviciding at 80% to

ITNs at 50% might not be sufficient to interrupt transmission (A, B, and C); but adding another intervention (e.g. ATSB at 50%) reduces

transmission dramatically and adding the fourth intervention (e.g. endectocide-treated cattle at 80%) is sufficient to interrupt transmission

with baseline EIR of 100.

https://doi.org/10.1371/journal.pone.0187680.g006
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recommendation to use insecticide-treated cattle to control malaria transmission vectored

by An. arabeinsis is similar to the previous studies [33].

Previous studies [3, 5, 7, 45–47] have recommended that novel tools be considered to com-

plement ITNs, and have emphasized the need to quantify the overall impact of these novel

tools to control malaria transmission. Our model can be used to quantify a comprehensive list

of vector control tools in addition to ITNs. Simulation results presented here are examples of

scenarios in which combinations of interventions may be effective in targeting indoor and out-

door biting and resting mosquitoes, mosquito feeding on non-human hosts, feeding on sugar

sources, and at larval aquatic stages. It is clear from the results that targeting mosquitoes at

aquatic stages with either larviciding, biological control or source reduction is a highly effective

option.

As with any modeling analysis, there are limitations such as excluding several factors rele-

vant to malaria transmission, including seasonality, heterogeneity and mosquito resistance

against insecticides. As an example, implication of ignoring seasonality would be larviciding

may achieve lower levels of coverage during the rainy season so would be less effective; or

interventions with short half-lives such as IRS could be more effective. Seasonality is an

important aspect that we will investigate further in future work as an expansion of VCOM

framework. Also, insecticide resistance threatens the efficacy of insecticide-based interven-

tions and is an issue that should be considered when evaluating the impact of these interven-

tions. Despite these limitations, the VCOM framework can be a highly useful decision-

making tool in the design of vector control strategies and will provide increasingly accurate

insights and decision support as development continues. The modeling framework allows

the synergies of a range of interventions to be captured and for the combined impact of

various combinations of interventions to be predicted in a range of settings. Similarly,

VCOM will be a useful tool in the selection of interventions for vector control trials and

operational research and in the design of trials themselves. Although, operational predictions

cannot be made using this framework due to the lack of model detail and data to inform

such model detail, the relative scale of intervention impact predicted by the VCOM frame-

work provides programmatically useful guidance on which interventions are most synergis-

tic in a range of settings. Using this modeling framework, researchers and national malaria

control programs (NMCPs) will be able to explore intervention combinations for malaria

elimination in a range of eco-epidemiological settings in areas with low, moderate, and high

malaria transmission.

In the absence of detailed data on correlations between parameters, for the sensitivity analy-

sis, we make the standard assumption that parameters are independently distributed with uni-

form distributions. As new data become available from novel and existing interventions, the

VCOM framework will be refined, parameterized and validated. We will be able to use the

framework to provide insights on optimized interventions packages that can be used to target

zoophagic vectors and/or multi-species populations at once. Also, the development of resis-

tance by mosquito species against vector control tools will be incorporated. Through the addi-

tion of cost data, cost-effectiveness analysis will be performed in a range of settings of interest

to malaria control programs.

The VCOM modeling framework is available as an easy-to-use online platform with expec-

tations that this will enhance the accessibility and usefulness of the modeling framework.

Nonetheless, VCOM is a simplification of complex dynamical systems for malaria transmis-

sion, control and elimination, so recommendations from VCOM should be considered more

as providing insights rather than firm, quantitative predictions. Researchers should work

closely with NMCPs and other stakeholders and end users to ensure these tools provide useful

insights and can assist in informed decision making.
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