62 research outputs found
Systematic assessment of outcomes following a genetic diagnosis identified through a large-scale research study into developmental disorders.
PURPOSE: The clinical and psychosocial outcomes associated with receiving a genetic diagnosis for developmental disorders are wide-ranging but under-studied. We sought to investigate outcomes from a subset of families who received a diagnosis through the Deciphering Developmental Disorders (DDD) study. METHODS: Individuals recruited through the Peninsula Clinical Genetics Service who received a confirmed genetic diagnosis through the DDD study before August 2019 (n = 112) were included in a clinical audit. Families with no identified clinical outcomes (n = 16) were invited to participate in semistructured telephone interviews. RESULTS: Disease-specific treatment was identified for 7 probands (6%), while 48 probands (43%) were referred for further investigations or screening and 60 probands (54%) were recruited to further research. Just 5 families (4%) opted for prenatal testing in a subsequent pregnancy, reflecting the relatively advanced maternal age in our cohort, and 42 families (38%) were given disease-specific information or signposting to patient-specific resources such as support groups. Six interviews were performed (response rate = 47%) and thematic analysis identified four major themes: reaching a diagnosis, emotional impact, family implications, and practical issues. CONCLUSION: Our data demonstrate that receiving a genetic diagnosis has substantial positive medical and psychosocial outcomes for the majority of patients and their families
Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans
This is the final version. It first appeared at http://www.nature.com/ncomms/2015/150901/ncomms9086/full/ncomms9086.html.Human-imprinting disorders are congenital disorders of growth, development and metabolism, associated with disturbance of parent of origin-specific DNA methylation at imprinted loci across the genome. Some imprinting disorders have higher than expected prevalence of monozygotic twinning, of assisted reproductive technology among parents, and of disturbance of multiple imprinted loci, for which few causative trans-acting mutations have been found. Here we report mutations in NLRP5 in five mothers of individuals affected by multilocus imprinting disturbance. Maternal-effect mutations of other human NLRP genes, NLRP7 and NLRP2, cause familial biparental hydatidiform mole and multilocus imprinting disturbance, respectively. Offspring of mothers with NLRP5 mutations have heterogenous clinical and epigenetic features, but cases include a discordant monozygotic twin pair, individuals with idiopathic developmental delay and autism, and families affected by infertility and reproductive wastage. NLRP5 mutations suggest connections between maternal reproductive fitness, early zygotic development and genomic imprinting.L.E.D. and F.I.R. were supported by the Medical Research Council (MR/J000329/1). J.B.,
K.B., B.H., L.S. M.B. and T.E. were supported by Bundesministerium fu?r Bildung und
Forschung (grant number 01GM1513A and 01GM1513C) and C.T. was supported by an
Ipsen Fellowship Grant. The cohort ?Imprinting Disorders-Finding out Why? was
accrued through the support of the Newlife Foundation for Disabled Children and
through support from the Wessex NIHR clinical research network and NIHR Wellcome
Southampton clinical research facility. Funding for DNA collection and methylation
analysis of normal control samples was provided in part by the National Institutes of
Health R01 AI091905-01, R01 AI061471 and R01 HL082925. ERM thanks Action
Medical Research for support
Rapid prenatal diagnosis using targeted exome sequencing: a cohort study to assess feasibility and potential impact on prenatal counseling and pregnancy management.
Purpose
Unexpected fetal abnormalities occur in 2-5% of pregnancies. While traditional cytogenetic and microarray approaches achieve diagnosis in around 40% of cases, lack of diagnosis in others impedes parental counseling, informed decision making, and pregnancy management. Postnatally exome sequencing yields high diagnostic rates, but relies on careful phenotyping to interpret genotype results. Here we used a multidisciplinary approach to explore the utility of rapid fetal exome sequencing for prenatal diagnosis using skeletal dysplasias as an exemplar.
Methods
Parents in pregnancies undergoing invasive testing because of sonographic fetal abnormalities, where multidisciplinary review considered skeletal dysplasia a likely etiology, were consented for exome trio sequencing (both parents and fetus). Variant interpretation focused on a virtual panel of 240 genes known to cause skeletal dysplasias.
Results
Definitive molecular diagnosis was made in 13/16 (81%) cases. In some cases, fetal ultrasound findings alone were of sufficient severity for parents to opt for termination. In others, molecular diagnosis informed accurate prediction of outcome, improved parental counseling, and enabled parents to terminate or continue the pregnancy with certainty.
Conclusion
Trio sequencing with expert multidisciplinary review for case selection and data interpretation yields timely, high diagnostic rates in fetuses presenting with unexpected skeletal abnormalities. This improves parental counseling and pregnancy management.Genetics in Medicine advance online publication, 29 March 2018; doi:10.1038/gim.2018.30
Personalized recurrence risk assessment following the birth of a child with a pathogenic de novo mutation
Following the diagnosis of a paediatric disorder caused by an apparently de novo mutation, a recurrence risk of 1-2% is frequently quoted due to the possibility of parental germline mosaicism; but for any specific couple, this figure is usually incorrect. We present a systematic approach to providing individualized recurrence risk. By combining locus-specific sequencing of multiple tissues to detect occult mosaicism with long-read sequencing to determine the parent-of-origin of the mutation, we show that we can stratify the majority of couples into one of seven discrete categories associated with substantially different risks to future offspring. Among 58 families with a single affected offspring (representing 59 de novo mutations in 49 genes), the recurrence risk for 35 (59%) was decreased below 0.1%, but increased owing to parental mixed mosaicism for 5 (9%)-that could be quantified in semen for paternal cases (recurrence risks of 5.6-12.1%). Implementation of this strategy offers the prospect of driving a major transformation in the practice of genetic counselling
Diagnosis of lethal or prenatal-onset autosomal recessive disorders by parental exome sequencing.
OBJECTIVE: Rare genetic disorders resulting in prenatal or neonatal death are genetically heterogeneous, but testing is often limited by the availability of fetal DNA, leaving couples without a potential prenatal test for future pregnancies. We describe our novel strategy of exome sequencing parental DNA samples to diagnose recessive monogenic disorders in an audit of the first 50 couples referred. METHOD: Exome sequencing was carried out in a consecutive series of 50 couples who had 1 or more pregnancies affected with a lethal or prenatal-onset disorder. In all cases, there was insufficient DNA for exome sequencing of the affected fetus. Heterozygous rare variants (MAF < 0.001) in the same gene in both parents were selected for analysis. Likely, disease-causing variants were tested in fetal DNA to confirm co-segregation. RESULTS: Parental exome analysis identified heterozygous pathogenic (or likely pathogenic) variants in 24 different genes in 26/50 couples (52%). Where 2 or more fetuses were affected, a genetic diagnosis was obtained in 18/29 cases (62%). In most cases, the clinical features were typical of the disorder, but in others, they result from a hypomorphic variant or represent the most severe form of a variable phenotypic spectrum. CONCLUSION: We conclude that exome sequencing of parental samples is a powerful strategy with high clinical utility for the genetic diagnosis of lethal or prenatal-onset recessive disorders. © 2017 The Authors Prenatal Diagnosis published by John Wiley & Sons Ltd
The broad phenotypic spectrum of PPP2R1A-related neurodevelopmental disorders correlates with the degree of biochemical dysfunction
Purpose: Neurodevelopmental disorders (NDD) caused by protein
phosphatase 2A (PP2A) dysfunction have mainly been associated
with de novo variants in PPP2R5D and PPP2CA, and more rarely in
PPP2R1A. Here, we aimed to better understand the latter by
characterizing 30 individuals with de novo and often recurrent
variants in this PP2A scaffolding Aα subunit.
Methods: Most cases were identified through routine clinical
diagnostics. Variants were biochemically characterized for phosphatase activity and interaction with other PP2A subunits.
Results: We describe 30 individuals with 16 different variants in
PPP2R1A, 21 of whom had variants not previously reported. The severity
of developmental delay ranged from mild learning problems to severe
intellectual disability (ID) with or without epilepsy. Common features
were language delay, hypotonia, and hypermobile joints. Macrocephaly
was only seen in individuals without B55α subunit-binding deficit, and
these patients had less severe ID and no seizures. Biochemically more
disruptive variants with impaired B55α but increased striatin binding
were associated with profound ID, epilepsy, corpus callosum hypoplasia,
and sometimes microcephaly.
Conclusion: We significantly expand the phenotypic spectrum of
PPP2R1A-related NDD, revealing a broader clinical presentation of the
patients and that the functional consequences of the variants are more
diverse than previously reported
The contribution of X-linked coding variation to severe developmental disorders
Over 130 X-linked genes have been robustly associated with developmental disorders, and X-linked causes have been hypothesised to underlie the higher developmental disorder rates in males. Here, we evaluate the burden of X-linked coding variation in 11,044 developmental disorder patients, and find a similar rate of X-linked causes in males and females (6.0% and 6.9%, respectively), indicating that such variants do not account for the 1.4-fold male bias. We develop an improved strategy to detect X-linked developmental disorders and identify 23 significant genes, all of which were previously known, consistent with our inference that the vast majority of the X-linked burden is in known developmental disorder-associated genes. Importantly, we estimate that, in male probands, only 13% of inherited rare missense variants in known developmental disorder-associated genes are likely to be pathogenic. Our results demonstrate that statistical analysis of large datasets can refine our understanding of modes of inheritance for individual X-linked disorders
Finding Diagnostically Useful Patterns in Quantitative Phenotypic Data.
Trio-based whole-exome sequence (WES) data have established confident genetic diagnoses in ∼40% of previously undiagnosed individuals recruited to the Deciphering Developmental Disorders (DDD) study. Here we aim to use the breadth of phenotypic information recorded in DDD to augment diagnosis and disease variant discovery in probands. Median Euclidean distances (mEuD) were employed as a simple measure of similarity of quantitative phenotypic data within sets of ≥10 individuals with plausibly causative de novo mutations (DNM) in 28 different developmental disorder genes. 13/28 (46.4%) showed significant similarity for growth or developmental milestone metrics, 10/28 (35.7%) showed similarity in HPO term usage, and 12/28 (43%) showed no phenotypic similarity. Pairwise comparisons of individuals with high-impact inherited variants to the 32 individuals with causative DNM in ANKRD11 using only growth z-scores highlighted 5 likely causative inherited variants and two unrecognized DNM resulting in an 18% diagnostic uplift for this gene. Using an independent approach, naive Bayes classification of growth and developmental data produced reasonably discriminative models for the 24 DNM genes with sufficiently complete data. An unsupervised naive Bayes classification of 6,993 probands with WES data and sufficient phenotypic information defined 23 in silico syndromes (ISSs) and was used to test a "phenotype first" approach to the discovery of causative genotypes using WES variants strictly filtered on allele frequency, mutation consequence, and evidence of constraint in humans. This highlighted heterozygous de novo nonsynonymous variants in SPTBN2 as causative in three DDD probands
- …