302 research outputs found

    Multiple Texture Boltzmann Machines

    Get PDF
    We assess the generative power of the mPoTmodel of [10] with tiled-convolutional weight sharing as a model for visual textures by specifically training on this task, evaluating model performance on texture synthesis and inpainting tasks using quantitative metrics. We also analyze the relative importance of the mean and covariance parts of the mPoT model by comparing its performance to those of its subcomponents, tiled-convolutional versions of the PoT/FoE and Gaussian-Bernoulli restricted Boltzmann machine (GB-RBM). Our results suggest that while state-of-the-art or better performance can be achieved using the mPoT, similar performance can be achieved with the mean-only model. We then develop a model for multiple textures based on the GB-RBM, using a shared set of weights but texturespecific hidden unit biases. We show comparable performance of the multiple texture model to individually trained texture models.

    On-line PCA with Optimal Regrets

    Full text link
    We carefully investigate the on-line version of PCA, where in each trial a learning algorithm plays a k-dimensional subspace, and suffers the compression loss on the next instance when projected into the chosen subspace. In this setting, we analyze two popular on-line algorithms, Gradient Descent (GD) and Exponentiated Gradient (EG). We show that both algorithms are essentially optimal in the worst-case. This comes as a surprise, since EG is known to perform sub-optimally when the instances are sparse. This different behavior of EG for PCA is mainly related to the non-negativity of the loss in this case, which makes the PCA setting qualitatively different from other settings studied in the literature. Furthermore, we show that when considering regret bounds as function of a loss budget, EG remains optimal and strictly outperforms GD. Next, we study the extension of the PCA setting, in which the Nature is allowed to play with dense instances, which are positive matrices with bounded largest eigenvalue. Again we can show that EG is optimal and strictly better than GD in this setting

    Developing fine-grained nationwide predictions of valuable forests using biodiversity indicator bird species

    Get PDF
    Publisher Copyright: © 2021 The Authors. Ecological Applications published by Wiley Periodicals LLC on behalf of The Ecological Society of America.The use of indicator species in forest conservation and management planning can facilitate enhanced preservation of biodiversity from the negative effects of forestry and other uses of land. However, this requires detailed and spatially comprehensive knowledge of the habitat preferences and distributions of selected focal indicator species. Unfortunately, due to limited resources for field surveys, only a small proportion of the occurrences of focal species is usually known. This shortcoming can be circumvented by using modelling techniques to predict the spatial distribution of suitable sites for the target species. Airborne laser scanning (ALS) and other remote sensing (RS) techniques have the potential to provide useful environmental data covering systematically large areas for these purposes. Here, we focused on six bird of prey and woodpecker species known to be good indicators of boreal forest biodiversity values. We used known nest sites of the six indicator species based on nestling ringing records. Thus, the most suitable nesting sites of these species provide important information for biodiversity-friendly forest management and conservation planning. We developed fine-grained, i.e., 96 x 96 m grid cell resolution, predictive maps across the whole of Finland of the suitable nesting habitats based on ALS and other RS data and spatial information on the distribution of important forest stands for the six studied biodiversity indicator bird species based on nesting habitat suitability modelling, i.e., the MaxEnt model. Habitat preferences of the study species, as determined by MaxEnt, were in line with the previous knowledge of species-habitat relations. The proportion of suitable habitats of these species in protected areas was considerable, but our analysis also revealed many potentially high-quality forest stands outside protected areas. However, many of these sites are increasingly threatened by logging due to increased pressures for using forests for bioeconomy and forest industry based on National Forest Strategy. Predicting habitat suitability based on information on the nest sites of indicator species provides a new tool for systematic conservation planning over large areas in boreal forests in Europe, and corresponding approach would also be feasible and recommendable elsewhere where similar data are available.The use of indicator species in forest conservation and management planning can facilitate enhanced preservation of biodiversity from the negative effects of forestry and other uses of land. However, this requires detailed and spatially comprehensive knowledge of the habitat preferences and distributions of selected focal indicator species. Unfortunately, due to limited resources for field surveys, only a small proportion of the occurrences of focal species is usually known. This shortcoming can be circumvented by using modeling techniques to predict the spatial distribution of suitable sites for the target species. Airborne laser scanning (ALS) and other remote sensing (RS) techniques have the potential to provide useful environmental data covering systematically large areas for these purposes. Here, we focused on six bird of prey and woodpecker species known to be good indicators of boreal forest biodiversity values. We used known nest sites of the six indicator species based on nestling ringing records. Thus, the most suitable nesting sites of these species provide important information for biodiversity-friendly forest management and conservation planning. We developed fine-grained, that is, 96 x 96 m grid cell resolution, predictive maps across the whole of Finland of the suitable nesting habitats based on ALS and other RS data and spatial information on the distribution of important forest stands for the six studied biodiversity indicator bird species based on nesting-habitat suitability modeling, that is, the MaxEnt model. Habitat preferences of the study species, as determined by MaxEnt, were in line with the previous knowledge of species-habitat relations. The proportion of suitable habitats of these species in protected areas (PAs) was considerable, but our analysis also revealed many potentially high-quality forest stands outside PAs. However, many of these sites are increasingly threatened by logging because of increased pressures for using forests for bioeconomy and forest industry based on National Forest Strategy. Predicting habitat suitability based on information on the nest sites of indicator species provides a new tool for systematic conservation planning over large areas in boreal forests in Europe, and a corresponding approach would also be feasible and recommendable elsewhere where similar data are available.Peer reviewe

    Bayesian Generalized Probability Calculus for Density Matrices

    Full text link
    One of the main concepts in quantum physics is a density matrix, which is a symmetric positive definite matrix of trace one. Finite probability distributions can be seen as a special case when the density matrix is restricted to be diagonal. We develop a probability calculus based on these more general distributions that includes definitions of joints, conditionals and formulas that relate these, including analogs of the Theorem of Total Probability and various Bayes rules for the calculation of posterior density matrices. The resulting calculus parallels the familiar "conventional" probability calculus and always retains the latter as a special case when all matrices are diagonal. We motivate both the conventional and the generalized Bayes rule with a minimum relative entropy principle, where the Kullbach-Leibler version gives the conventional Bayes rule and Umegaki's quantum relative entropy the new Bayes rule for density matrices. Whereas the conventional Bayesian methods maintain uncertainty about which model has the highest data likelihood, the generalization maintains uncertainty about which unit direction has the largest variance. Surprisingly the bounds also generalize: as in the conventional setting we upper bound the negative log likelihood of the data by the negative log likelihood of the MAP estimator

    Genetic determinants of glucose-6-phosphate dehydrogenase activity in Kenya

    Get PDF
    Background: The relationship between glucose-6-phosphate dehydrogenase (G6PD) deficiency and clinical phenomena such as primaquine-sensitivity and protection from severe malaria remains poorly defined, with past association studies yielding inconsistent and conflicting results. One possibility is that examination of a single genetic variant might underestimate the presence of true effects in the presence of unrecognized functional allelic diversity. Methods: We systematically examined this possibility in Kenya, conducting a fine-mapping association study of erythrocyte G6PD activity in 1828 Kenyan children across 30 polymorphisms at or around the G6PD locus. Results: We demonstrate a strong functional role for c.202G>A (rs1050828), which accounts for the majority of variance in enzyme activity observed (P=1.5 × 10-200, additive model). Additionally, we identify other common variants that exert smaller, intercorrelated effects independent of c.202G>A, and haplotype analyses suggest that each variant tags one of two haplotype motifs that are opposite in sequence identity and effect direction. We posit that these effects are of biological and possible clinical significance, specifically noting that c.376A>G (rs1050829) augments 202AG heterozygote risk for deficiency trait by two-fold (OR = 2.11 [1.12 - 3.84], P=0.014). Conclusions: Our results suggest that c.202G>A is responsible for the majority of the observed prevalence of G6PD deficiency trait in Kenya, but also identify a novel role for c.376A>G as a genetic modifier which marks a common haplotype that augments the risk conferred to 202AG heterozygotes, suggesting that variation at both loci merits consideration in genetic association studies probing G6PD deficiency-associated clinical phenotypes. </p

    A keystone species, European aspen (Populus tremula L.), in boreal forests : Ecological role, knowledge needs and mapping using remote sensing

    Get PDF
    European aspen (Populus tremula L.) is a keystone species in boreal forests that are dominated by coniferous tree species. Both living and dead aspen trees contribute significantly to the species diversity of forest landscapes. Thus, spatial and temporal continuity of aspen is a prerequisite for the long-term persistence of viable populations of numerous aspen-associated species. In this review, we collate existing knowledge on the ecological role of European aspen, assess the knowledge needs for aspen occurrence patterns and dynamics in boreal forests and discuss the potential of different remote sensing techniques in mapping aspen at various spatiotemporal scales. The role of aspen as a key ecological feature has received significant attention, and studies have recognised the negative effects of modern forest management methods and heavy browsing on aspen occurrence and regeneration. However, the spatial knowledge of occurrence, abundance and temporal dynamics of aspen is scarce and incomprehensive. The remote sensing studies reviewed here highlight particularly the potential of three-dimensional data derived from airborne laser scanning or photogrammetric point clouds and airborne imaging spectroscopy in mapping European aspen, quaking aspen (Populus tremuloides Michx.) and other Populus species. In addition to tree species discrimination, these methods can provide information on biophysical, biochemical properties and even genetic diversity of aspen trees. Major obstacles in aspen detection using remote sensing are the low proportion and scattered occurrence of European aspen in boreal forests and the overlap of spectral and/or structural properties of European aspen and quaking aspen with some other tree species. Furthermore, the suitability of remote sensing data for aspen mapping and monitoring depends on the geographical coverage of data, the availability of multitemporal data and the costs of data acquisition. Our review highlights that integration of ecological knowledge with spatiotemporal information acquired by remote sensing is key to understanding the current and future distribution patterns of aspen-related biodiversity.peerReviewe

    Experience of a Preventive Experiment : Spatial Social Mixing in Post-World War II Housing Estates in Helsinki, Finland

    Get PDF
    The contingent of large housing estates built in the 1960s and 1970s accounts for almost a half of all high-rises in Finland. The primary ideology in their genesis was to combine industrially prefabricated urban housing development with the surrounding forest landscape—together with a policy of spatial social mixing—to prevent social disorder and segregation. These policies seemed to work as intended until the early 1990s, but have since proved to be insufficient. With Western integration and new information and communication-based economic growth, new trends of population differentiation have emerged. As new wealth has moved out to the fringes of cities, the large housing estates have declined socio-economically—and have been enriched ethnically. This differentiation is structurally produced, works through the regional housing market and, as such, is beyond the scope of the preventive policies pursued. Recent attempts at controlling the regional markets and new forms of spatial social mixing have so far proved difficult.The contingent of large housing estates built in the 1960s and 1970s accounts for almost a half of all high-rises in Finland. The primary ideology in their genesis was to combine industrially prefabricated urban housing development with the surrounding forest landscape—together with a policy of spatial social mixing—to prevent social disorder and segregation. These policies seemed to work as intended until the early 1990s, but have since proved to be insufficient. With Western integration and new information and communication-based economic growth, new trends of population differentiation have emerged. As new wealth has moved out to the fringes of cities, the large housing estates have declined socio-economically—and have been enriched ethnically. This differentiation is structurally produced, works through the regional housing market and, as such, is beyond the scope of the preventive policies pursued. Recent attempts at controlling the regional markets and new forms of spatial social mixing have so far proved difficult.Peer reviewe

    BDUOL: Double Updating Online Learning on a Fixed Budget

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier 1; Microsoft Research gran
    corecore